
 Permanent i ncome hyp ot hesis : a f o rmal st at ement .

Time is discrete and horizon is infinite. Assume that there is an infinitely-
lived individual who faces an exogenous deterministic stream of income {yt}∞t=0
and an exogenous deterministic sequence of (real) interest rates {rt}∞t=0. The
agent seeks to maximize her discounted life-time utility, where one-period
utility function is u(c), and the discount factor is β, 0 < β < 1. The se-
quence problem of the agent is, thus,

max
∞X
t=0

βtu(ct) (1)

subject to the sequence (one for each t) budget constraints,

At+1
1 + rt+1

= At + yt − ct, (2)

where At is agent’s wealth at time t and A0 is given. The budget constraint
states that the present value of next-period wealth, At+1

1+rt+1
, is the current

resources, At + yt, net of current consumption, ct. Notice that we implicitly
assume the existence of a perfect asset market which allows the agent to
borrow/lend at next-period interest rate, rt+1.
Here At is the state variable of the agent (the agents starts period t having

wealth At) and At+1 and ct are control variables (in each period agent chooses
how much to consume and how much wealth to set aside for the future).The
Bellman equation associated with this problem is

V (At) = max {u(ct) + βV (At+1)} (3)

subject to the (time-t) budget constraint

At+1 = (1 + rt+1) (At + yt − ct) . (4)

One can use (4) to eliminate consumption in the Bellman equation (3),
which then reduces to:

V (At) = max

½
u

µ
At + yt − At+1

1 + rt+1

¶
+ βV (At+1)

¾
. (5)
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The first order condition for (5) is:

−u0(ct) 1

1 + rt+1
+ βV 0(At+1) = 0, (6)

and the envelope condition is:

V (At) = u
0(ct).

Updating the latter by one period and substituting the result in (6), one
obtains the Euler equation:

u0(ct) = β (1 + rt+1)u
0(ct+1), (7)

which describes the evolution of consumption along the optimal path. As is
known, the Euler equation is only a necessary condition for optimality; the
necessary and sufficient conditions are the Euler equation and the transver-
sality condition, which in this case writes as:

limβtu0(ct)At = 0. (8)

Let us now start making additional assumptions. The first one is that
I assume that the interest rate r is constant and is equal to the discount
rate, rt ≡ r = 1

β
− 1. This implies (by virtue of the Euler equation 7) that

consumption is constant over time, ct = c.
Given A0, one can use the sequence of the budget constraints (4) to

recover c. In period zero, the budget constraint is:

A0 =
A1
1 + r

− (y0 − c);

in period one, the constraint is:

A1 =
A2
1 + r

− (y1 − c),

which implies:

A0 =
1

1 + r

µ
A2
1 + r

− (y1 − c)
¶
− (y0 − c).

Continuing by induction, one obtains,

A0 =

µ
1

1 + r

¶t
At −

t−1X
k=0

µ
1

1 + r

¶k
(yk − c). (9)
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The transversality condition (8) implies that in the limit as t→∞, the first
term in the right-hand side of (9) vanishes, so that:

A0 = −
∞X
k=0

µ
1

1 + r

¶k
(yk − c). (10)

The latter can be rearranged to yield,

c =
r

1 + r

Ã
A0 +

∞X
k=0

µ
1

1 + r

¶k
yk

!
, (11)

so that consumption is the annuity (annual rent) value of future income. We
shall term the latter a permanent income, thus making no difference between
the permanent income theory of Friedman (1957) and the life-cycle theory of
Modigliani and Brumberg (1954).
Now let us see what changes if a more realistic assumption of income

uncertainty is brought in, i.e. from now on {yt}∞t=0 is a given sequence of
random variables. (Recall that I still maintain the assumption about the
interest rate being equal to the discount rate.) The problem of the agent is
now to maximize expected discounted utility of future consumption, that is
to maximize

E0

∞X
t=0

βtu(ct) (12)

subject to the same sequence of budget constraints, where E0 denotes ex-
pectation as of time zero. Furthermore, following Hall (1978), assume that
agents form rational expectations, so that E0 is the mathematical expecta-
tions operator. Notice that tautologically I can write the sequence problem
beginning from any pre-specified time period t. Now the Bellman equation
will have an expectation operator in it, so that

V (At) = max

½
u

µ
At + yt − At+1

1 + rt+1

¶
+ βEtV (At+1)

¾
, (13)

and hence, the Euler equation is:

u0(ct) = βEt [(1 + rt+1)u
0(ct+1)] , (14)

or taking into account that rt = 1
β
− 1 for all t,

u0(ct) = Etu0(ct+1). (15)
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Next, assume that u(c) is quadratic, so that marginal utility, u0(c) is linear,
u0(c) = γ0 − γ1c. Then, (15) simplifies to:

ct = Etct+1, (16)

so that consumption follows a martingale. The martingale property implies
that consumption can be written as:

ct+1 = ct + ²t,

where ²t has zero mean for all t, but ²t are not necessarily identically indepen-
dently distributed. In other words, consumption can not be predicted from
lagged consumption, contrary to the standard (at that time –mid-seventies)
specification of consumption functions.
Now let us work a bit with the budget constraints. Take (10), which now

must hold in expectation,

A0 = −E0
" ∞X
k=0

µ
1

1 + r

¶k
(yk − ck)

#
, (17)

and notice that a similar constraint must hold for an arbitrary t,

At = −Et
" ∞X
k=0

µ
1

1 + r

¶k
(yt+k − ct+k)

#
. (18)

The martingale property of consumption implies that:

Etct+k = Etct+1 = ct

for all k, which allows to rewrite (18) as:

ct =
r

1 + r

Ã
At +

∞X
k=0

µ
1

1 + r

¶k
Etyt+k

!
(19)

– a stochastic version of (11). To arrive at our final expression, lag (19) by
one period

ct−1 =
r

1 + r

Ã
At−1 + yt−1 +

1

1 + r

∞X
k=0

µ
1

1 + r

¶k
Et−1yt+k

!
(20)
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and use the budget constraint,

At = (1 + r)(At−1 + yt−1 − ct−1),
to get rid of At in (19). Then (19) and (20) can be written as (respectively):

ct = r(At−1 + yt−1 − ct−1) + r

1 + r

∞X
k=0

µ
1

1 + r

¶k
Etyt+k (21)

and

(1 + r)ct−1 = r(At−1 + yt−1) +
r

1 + r

∞X
k=0

µ
1

1 + r

¶k
Et−1yt+k

or

ct−1 = r(At−1 + yt−1 − ct−1) + r

1 + r

∞X
k=0

µ
1

1 + r

¶k
Et−1yt+k. (22)

subtraction of (22) from (21) yields:

∆ct =
r

1 + r

∞X
k=0

µ
1

1 + r

¶k
(Et −Et−1) yt+k, (23)

which is our final statement of the permanent income hypothesis.
Now, what’s the big deal of that? Its implications. Look, the change in

consumption is proportional to the current innovation to income and can-
not be predicted by regressing consumption on lagged consumption and/or
income. This is in sharp contrast with a postulate of an existing stable re-
lationship between consumption and lagged income – a routine assumption
used in the seventies to estimate consumption functions. Indeed, assume as
it was standard at that time, that

ct = f(yt, At,Γ(L)yt),

where Γ(L) is some lag polynomial. The function f can be taken linear
without loss of generality because any non-linear function can be linearized
in the neighborhood of the observed mean of its arguments,

ct = c+ γAt + α0yt + α1yt−1 + α2yt−2 + ...+ εt. (24)

If that is a true stable relationship between consumption and income, then
it survives being put to the first differences:

∆ct = γ∆At + α0∆yt + α1∆yt−1 + α2∆yt−2 + ...+ εt − εt−1.
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The permanent income hypothesis (see (23) above) implies that

γ = 0 and αi = 0 for i = 0, 1, ...

or else (24) is inconsistent with (23). This prediction was a big shock to many
of Hall’s colleagues for it trashed a good deal their research on consumption.
The implication of the permanent income hypothesis that consumption

is independent of past income is often called an orthogonality proposition.
Hall (1978) brought this proposition to data and found that although con-
sumption is orthogonal to past income, it is not orthogonal to lagged asset
holdings, which gave him the grounds for rejection of the hypothesis. Never-
theless, the bomb has exploded, and his paper changed the research agenda
on consumption forever.
The implication of (23) is not only orthogonality of consumption, but also

a quantitative implication about how much volatile consumption should be.
Had we known the process, which generates income, then we could test the
validity of Hall’s proposition based on the observed volatility of consumption.
To illustrate the point, assume that income follows a simple MA(1) process:

yt = µ+ εt + βεt−1.

Then,
(Et − Et−1) yt = µ+ εt + βεt−1| {z }

Etyt

− (µ+ βεt−1)| {z }
Et−1yt

= εt,

(Et −Et−1) yt+1 = µ+ βεt| {z }
Etyt+1

− µ|{z}
Et−1yt+1

= βεt,

(Et − Et−1) yt+k = µ|{z}
Etyt+k

− µ|{z}
Et−1yt+k

= 0  for all k≥ 2.

Thus,

∆ct =
r

1 + r

X
k=0

µ
1 +

β

1 + r

¶
εt.

For a general MA(n) process for income,

yt = µ+ εt + β1εt−1 + β2εt−2 + ...+ βnεt−n,

∆ct =
r

1 + r

∞X
k=0

µ
1 +

β1
1 + r

+
β2

(1 + r)2
+ ...+

βn
(1 + r)n

¶
εt,
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where n can be infinity. The case of an infinite MA process is particularly im-
portant because, according to Wold theorem, any stationary AR(n) process
can be represented as an infinite MA process. Notice, that for a general
ARMA process for income,

D(L)yt = B(L)εt,

(23) can be written as

∆ct =
r

1 + r

B
¡
1
1+r

¢
D
¡
1
1+r

¢εt, (25)

where B
¡
1
1+r

¢
is the lag polynomial

B(L) = µ+ β1L+ β2L
2 + ...βnL

n,

evaluated at L = 1
1+r
, and D

¡
1
1+r

¢
is the corresponding (the AR part of the

process) lag polynomial evaluated at L = 1
1+r
.

Let us call (25) a volatility proposition (not a universally acknowledged
term). The empirical tests of the orthogonality proposition lead to a puzzle
called excess sensitivity of consumption (consumption is not orthogonal to
lagged income as implied by 23); the empirical tests of the volatility proposi-
tion lead to a puzzle called excess smoothness of consumption (consumption
is less volatile than is implied by 25). In the end of the day we shall see that
both excess sensitivity and excess smoothness are manifestations of the same
phenomenon – the empirical failure of the permanent income hypothesis. ¥
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