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Introduction

Topology is an important and interesting area of mathematics, the study of which will not only

introduce you to new concepts and theorems but also put into context old ones like continuous

functions. However, to say just this is to understate the significance of topology. It is so

fundamental that its influence is evident in almost every other branch of mathematics. This

makes the study of topology relevant to all who aspire to be mathematicians whether their first

love is (or will be) algebra, analysis, category theory, chaos, continuum mechanics, dynamics,

geometry, industrial mathematics, mathematical biology, mathematical economics, mathematical

finance, mathematical modelling, mathematical physics, mathematics of communication, number

theory, numerical mathematics, operations research or statistics. (The substantial bibliography

at the end of this book suffices to indicate that topology does indeed have relevance to all these

areas, and more.) Topological notions like compactness, connectedness and denseness are as

basic to mathematicians of today as sets and functions were to those of last century.

Topology has several different branches — general topology (also known as point-set topology),

algebraic topology, differential topology and topological algebra — the first, general topology,

being the door to the study of the others. We aim in this book to provide a thorough grounding

in general topology. Anyone who conscientiously studies about the first ten chapters and solves

at least half of the exercises will certainly have such a grounding.

For the reader who has not previously studied an axiomatic branch of mathematics such as

abstract algebra, learning to write proofs will be a hurdle. To assist you to learn how to write

proofs, quite often in the early chapters, we include an aside which does not form part of the

proof but outlines the thought process which led to the proof.
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Asides are indicated in the following manner:

In order to arrive at the proof, we went through this thought process, which might well

be called the “discovery� or “experiment phase�.

However, the reader will learn that while discovery or experimentation is often

essential, nothing can replace a formal proof.

There are many exercises in this book. Only by working through a good number of exercises

will you master this course. Very often we include new concepts in the exercises; the concepts

which we consider most important will generally be introduced again in the text.

Harder exercises are indicated by an *.
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Chapter 1

Topological Spaces

Introduction

Tennis, football, baseball and hockey may all be exciting games but to play them you must first

learn (some of) the rules of the game. Mathematics is no different. So we begin with the rules

for topology.

This chapter opens with the definition of a topology and is then devoted to some simple

examples: finite topological spaces, discrete spaces, indiscrete spaces, and spaces with the finite-

closed topology.

Topology, like other branches of pure mathematics such as group theory, is an axiomatic

subject. We start with a set of axioms and we use these axioms to prove propositions and

theorems. It is extremely important to develop your skill at writing proofs.

Why are proofs so important? Suppose our task were to construct a building. We would

start with the foundations. In our case these are the axioms or definitions – everything else is

built upon them. Each theorem or proposition represents a new level of knowledge and must be

firmly anchored to the previous level. We attach the new level to the previous one using a proof.

So the theorems and propositions are the new heights of knowledge we achieve, while the proofs

are essential as they are the mortar which attaches them to the level below. Without proofs the

structure would collapse.

So what is a mathematical proof?
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A mathematical proof is a watertight argument which begins with information you are given,

proceeds by logical argument, and ends with what you are asked to prove.

You should begin a proof by writing down the information you are given and then state what

you are asked to prove. If the information you are given or what you are required to prove contains

technical terms, then you should write down the definitions of those technical terms.

Every proof should consist of complete sentences. Each of these sentences should be a

consequence of (i) what has been stated previously or (ii) a theorem, proposition or lemma that

has already been proved.

In this book you will see many proofs, but note that mathematics is not a spectator sport. It

is a game for participants. The only way to learn to write proofs is to try to write them yourself.

1.1 Topology

1.1.1 Definitions. Let X be a non-empty set. A collection τ of subsets of X is said to

be a topology on X if

(i) X and the empty set, Ø, belong to τ ,

(ii) the union of any (finite or infinite) number of sets in τ belongs to τ , and

(iii) the intersection of any two sets in τ belongs to τ .

The pair (X,τ ) is called a topological space.

1.1.2 Example. Let X = {a, b, c, d, e, f} and

τ 1 = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e, f}}.

Then τ 1 is a topology on X as it satisfies conditions (i), (ii) and (iii) of Definitions 1.1.1.

1.1.3 Example. Let X = {a, b, c, d, e} and

τ 2 = {X,Ø, {a}, {c, d}, {a, c, e}, {b, c, d}}.

Then τ 2 is not a topology on X as the union

{c, d} ∪ {a, c, e} = {a, c, d, e}

of two members of τ 2 does not belong to τ 2 ; that is, τ 2 does not satisfy condition (ii) of

Definitions 1.1.1.
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1.1.4 Example. Let X = {a, b, c, d, e, f} and

τ 3 = {X,Ø, {a}, {f}, {a, f}, {a, c, f}, {b, c, d, e, f}} .

Then τ 3 is not a topology on X since the intersection

{a, c, f} ∩ {b, c, d, e, f} = {c, f}

of two sets in τ 3 does not belong to τ 3 ; that is, τ 3 does not have property (iii) of Definitions

1.1.1.

1.1.5 Example. Let N be the set of all natural numbers (that is, the set of all positive

integers) and let τ 4 consist of N, Ø, and all finite subsets of N. Then τ 4 is not a topology on

N, since the infinite union

{2} ∪ {3} ∪ · · · ∪ {n} ∪ · · · = {2, 3, . . . , n, . . . }

of members of τ 4 does not belong to τ 4 ; that is, τ 4 does not have property (ii) of Definitions

1.1.1.

1.1.6 Definitions. Let X be any non-empty set and let τ be the collection of all subsets

of X. Then τ is called the discrete topology on the set X. The topological space (X,τ ) is

called a discrete space.

We note that τ in Definitions 1.1.6 does satisfy the conditions of Definitions 1.1.1 and so is

indeed a topology.

Observe that the set X in Definitions 1.1.6 can be any non-empty set. So there is an infinite

number of discrete spaces – one for each set X.

1.1.7 Definitions. Let X be any non-empty set and τ = {X,Ø}. Then τ is called the

indiscrete topology and (X,τ ) is said to be an indiscrete space.

Once again we have to check that τ satisfies the conditions of Definitions 1.1.1 and so is

indeed a topology.



10 CHAPTER 1. TOPOLOGICAL SPACES

We observe again that the set X in Definitions 1.1.7 can be any non-empty set. So there

is an infinite number of indiscrete spaces – one for each set X.

In the introduction to this chapter we discussed the importance of

proofs and what is involved in writing them. Our first experience

with proofs is in Example 1.1.8 and Proposition 1.1.9. You should

study these proofs carefully.
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1.1.8 Example. If X = {a, b, c} and τ is a topology on X with {a} ∈ τ , {b} ∈ τ , and

{c} ∈ τ , prove that τ is the discrete topology.

Proof.

We are given that τ is a topology and that {a} ∈ τ , {b} ∈ τ , and {c} ∈ τ .

We are required to prove that τ is the discrete topology; that is, we are required to

prove (by Definitions 1.1.6) that τ contains all subsets of X. Remember that τ is a

topology and so satisfies conditions (i), (ii) and (iii) of Definitions 1.1.1.

So we shall begin our proof by writing down all of the subsets of X.

The set X has 3 elements and so it has 23 distinct subsets. They are: S1 = Ø, S2 = {a},
S3 = {b}, S4 = {c}, S5 = {a, b}, S6 = {a, c}, S7 = {b, c}, and S8 = {a, b, c} = X.

We are required to prove that each of these subsets is in τ . As τ is a topology, Definitions

1.1.1 (i) implies that X and Ø are in τ ; that is, S1 ∈ τ and S8 ∈ τ .

We are given that {a} ∈ τ , {b} ∈ τ and {c} ∈ τ ; that is, S2 ∈ τ , S3 ∈ τ and S4 ∈ τ .

To complete the proof we need to show that S5 ∈ τ , S6 ∈ τ , and S7 ∈ τ . But

S5 = {a, b} = {a} ∪ {b}. As we are given that {a} and {b} are in τ , Definitions 1.1.1 (ii)

implies that their union is also in τ ; that is, S5 = {a, b} ∈ τ .

Similarly S6 = {a, c} = {a} ∪ {c} ∈ τ and S7 = {b, c} = {b} ∪ {c} ∈ τ .

In the introductory comments on this chapter we observed that mathematics is not a

spectator sport. You should be an active participant. Of course your participation includes

doing some of the exercises. But more than this is expected of you. You have to think about

the material presented to you.

One of your tasks is to look at the results that we prove and to ask pertinent questions.

For example, we have just shown that if each of the singleton sets {a}, {b} and {c} is in τ and

X = {a, b, c}, then τ is the discrete topology. You should ask if this is but one example of a

more general phenomenon; that is, if (X,τ ) is any topological space such that τ contains every

singleton set, is τ necessarily the discrete topology? The answer is “yes�, and this is proved in

Proposition 1.1.9.
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1.1.9 Proposition. If (X,τ ) is a topological space such that, for every x ∈ X, the

singleton set {x} is in τ , then τ is the discrete topology.

Proof.

This result is a generalization of Example 1.1.8. Thus you might expect that the proof

would be similar. However, we cannot list all of the subsets of X as we did in Example

1.1.8 because X may be an infinite set. Nevertheless we must prove that every subset

of X is in τ .

At this point you may be tempted to prove the result for some special cases, for

example taking X to consist of 4, 5 or even 100 elements. But this approach is

doomed to failure. Recall our opening comments in this chapter where we described

a mathematical proof as a watertight argument. We cannot produce a watertight

argument by considering a few special cases, or even a very large number of special

cases. The watertight argument must cover all cases. So we must consider the general

case of an arbitrary non-empty set X. Somehow we must prove that every subset of X

is in τ .

Looking again at the proof of Example 1.1.8 we see that the key is that every subset

of X is a union of singleton subsets of X and we already know that all of the singleton

subsets are in τ . This is also true in the general case.

We begin the proof by recording the fact that every set is a union of its singleton subsets.

Let S be any subset of X. Then

S =
⋃
x∈S

{x}.

Since we are given that each {x} is in τ , Definitions 1.1.1 (ii) and the above equation imply that

S ∈ τ . As S is an arbitrary subset of X, we have that τ is the discrete topology.
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That every set S is a union of its singleton subsets is a result which we shall use from time

to time throughout the book in many different contexts. Note that it holds even when S = Ø as

then we form what is called an empty union and get Ø as the result.

Exercises 1.1

1. Let X = {a, b, c, d, e, f}. Determine whether or not each of the following collections of

subsets of X is a topology on X:

(a) τ 1 = {X, Ø, {a}, {a, f}, {b, f}, {a, b, f}};

(b) τ 2 = {X, Ø, {a, b, f}, {a, b, d}, {a, b, d, f}};

(c) τ 3 = {X, Ø, {f}, {e, f}, {a, f}}.

2. Let X = {a, b, c, d, e, f}. Which of the following collections of subsets of X is a topology on

X? (Justify your answers.)

(a) τ 1 = {X, Ø, {c}, {b, d, e}, {b, c, d, e}, {b}};

(b) τ 2 = {X, Ø, {a}, {b, d, e}, {a, b, d}, {a, b, d, e}};

(c) τ 3 = {X, Ø, {b}, {a, b, c}, {d, e, f}, {b, d, e, f}}.

3. If X = {a, b, c, d, e, f} and τ is the discrete topology on X, which of the following statements

are true?

(a) X ∈ τ ; (b) {X} ∈ τ ; (c) {Ø} ∈ τ ; (d) Ø ∈ τ ;

(e) Ø ∈ X; (f) {Ø} ∈ X; (g) {a} ∈ τ ; (h) a ∈ τ ;

(i) Ø ⊆ X; (j) {a} ∈ X; (k) {Ø} ⊆ X; (l) a ∈ X;

(m) X ⊆ τ ; (n) {a} ⊆ τ ; (o) {X} ⊆ τ ; (p) a ⊆ τ .

[Hint. Precisely six of the above are true.]

4. Let (X,τ ) be any topological space. Verify that the intersection of any finite number of

members of τ is a member of τ .

[Hint. To prove this result use “mathematical induction�.]
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5. Let R be the set of all real numbersset!of real numbers. Prove that each of the following

collections of subsets of R is a topology.

(i) τ 1 consists of R, Ø, and every interval (−n, n), for n any positive integer;

(ii) τ 2 consists of R, Ø, and every interval [−n, n], for n any positive integer;

(iii) τ 3 consists of R, Ø, and every interval [n,∞), for n any positive integer.

6. Let N be the set of all positive integers. Prove that each of the following collections of

subsets of N is a topology.

(i) τ 1 consists of N, Ø, and every set {1, 2, . . . , n}, for n any positive integer. (This is

called the initial segment topology.)

(ii) τ 2 consists of N, Ø, and every set {n, n + 1, . . . }, for n any positive integer. (This is

called the final segment topology.)

7. List all possible topologies on the following sets:

(a) X = {a, b} ;

(b) Y = {a, b, c}.

8. Let X be an infinite set and τ a topology on X. If every infinite subset of X is in τ , prove

that τ is the discrete topology.

9.* Let R be the set of all real numbers. Precisely three of the following ten collections of

subsets of R are topologies? Identify these and justify your answer.

(i) τ 1 consists of R, Ø, and every interval (a, b), for a and b any real numbers with a < b ;

(ii) τ 2 consists of R, Ø, and every interval (−r, r), for r any positive real number;

(iii) τ 3 consists of R, Ø, and every interval (−r, r), for r any positive rational number;

(iv) τ 4 consists of R, Ø, and every interval [−r, r], for r any positive rational number;

(v) τ 5 consists of R, Ø, and every interval (−r, r), for r any positive irrational number;

(vi) τ 6 consists of R, Ø, and every interval [−r, r], for r any positive irrational number;

(vii) τ 7 consists of R, Ø, and every interval [−r, r), for r any positive real number;

(viii) τ 8 consists of R, Ø, and every interval (−r, r], for r any positive real number;
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(ix) τ 9 consists of R, Ø, every interval [−r, r], and every interval (−r, r), for r any positive

real number;

(x) τ 10 consists of R, Ø, every interval [−n, n], and every interval (−r, r), for n any positive

integer and r any positive real number.

1.2 Open Sets, Closed Sets, and Clopen Sets

Rather than continually refer to “members of τ ", we find it more convenient to give such sets

a name. We call them “open sets�. We shall also name the complements of open sets. They

will be called “closed sets�. This nomenclature is not ideal, but derives from the so-called “open

intervals� and “closed intervals� on the real number line. We shall have more to say about this

in Chapter 2.

1.2.1 Definition. Let (X,τ ) be any topological space. Then the members of τ are said

to be open sets.

1.2.2 Proposition. If (X,τ ) is any topological space, then

(i) X and Ø are open sets,

(ii) the union of any (finite or infinite) number of open sets is an open set and

(iii) the intersection of any finite number of open sets is an open set.

Proof. Clearly (i) and (ii) are trivial consequences of Definition 1.2.1 and Definitions 1.1.1 (i)

and (ii). The condition (iii) follows from Definition 1.2.1 and Exercises 1.1 #4.

On reading Proposition 1.2.2, a question should have popped into your mind: while any

finite or infinite union of open sets is open, we state only that finite intersections of open sets

are open. Are infinite intersections of open sets always open? The next example shows that the

answer is “no�.
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1.2.3 Example. Let N be the set of all positive integers and let τ consist of Ø and each

subset S of N such that the complement of S in N, N \ S, is a finite set. It is easily verified that

τ satisfies Definitions 1.1.1 and so is a topology on N. (In the next section we shall discuss this

topology further. It is called the finite-closed topology.) For each natural number n, define the

set Sn as follows:

Sn = {1} ∪ {n+ 1} ∪ {n+ 2} ∪ {n+ 3} ∪ · · · = {1} ∪
∞⋃

m=n+1

{m}.

Clearly each Sn is an open set in the topology τ , since its complement is a finite set. However,

∞⋂
n=1

Sn = {1}. (1)

As the complement of {1} is neither N nor a finite set, {1} is not open. So (1) shows that the

intersection of the open sets Sn is not open.

You might well ask: how did you find the example presented in Example 1.2.3? The answer

is unglamorous! It was by trial and error.

If we tried, for example, a discrete topology, we would find that each intersection of open

sets is indeed open. The same is true of the indiscrete topology. So what you need to do is some

intelligent guesswork.

Remember that to prove that the intersection of open sets is not necessarily open, you need

to find just one counterexample!

1.2.4 Definition. Let (X,τ ) be a topological space. A subset S of X is said to be a

closed set in (X,τ ) if its complement in X, namely X \ S, is open in (X,τ ).

In Example 1.1.2, the closed sets are

Ø, X, {b, c, d, e, f}, {a, b, e, f}, {b, e, f} and {a}.

If (X,τ ) is a discrete space, then it is obvious that every subset of X is a closed set. However in

an indiscrete space, (X,τ ), the only closed sets are X and Ø.
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1.2.5 Proposition. If (X,τ ) is any topological space, then

(i) Ø and X are closed sets,

(ii) the intersection of any (finite or infinite) number of closed sets is a closed set and

(iii) the union of any finite number of closed sets is a closed set.

Proof. (i) follows immediately from Proposition 1.2.2 (i) and Definition 1.2.4, as the

complement of X is Ø and the complement of Ø is X.

To prove that (iii) is true, let S1, S2, . . . , Sn be closed sets. We are required to prove that

S1∪S2∪· · ·∪Sn is a closed set. It suffices to show, by Definition 1.2.4, that X \ (S1∪S2∪· · ·∪Sn)

is an open set.

As S1, S2, . . . , Sn are closed sets, their complements X \ S1, X \ S2, . . . , X \ Sn are open

sets. But

X \ (S1 ∪ S2 ∪ · · · ∪ Sn) = (X \ S1) ∩ (X \ S2) ∩ · · · ∩ (X \ Sn). (1)

As the right hand side of (1) is a finite intersection of open sets, it is an open set. So the

left hand side of (1) is an open set. Hence S1 ∪ S2 ∪ · · · ∪ Sn is a closed set, as required. So (iii)

is true.

The proof of (ii) is similar to that of (iii). [However, you should read the warning in the

proof of Example 1.3.9.]
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Warning. The names “open� and “closed� often lead newcomers to the world of topology into

error. Despite the names, some open sets are also closed sets! Moreover, some sets are neither

open sets nor closed sets! Indeed, if we consider Example 1.1.2 we see that

(i) the set {a} is both open and closed;

(ii) the set {b, c} is neither open nor closed;

(iii) the set {c, d} is open but not closed;

(iv) the set {a, b, e, f} is closed but not open.

In a discrete space every set is both open and closed, while in an indiscrete space (X,τ ), all

subsets of X except X and Ø are neither open nor closed.

To remind you that sets can be both open and closed we introduce the following definition.

1.2.6 Definition. A subset S of a topological space (X,τ ) is said to be clopen if it is

both open and closed in (X,τ ).

In every topological space (X,τ ) both X and Ø are clopen1.

In a discrete space all subsets of X are clopen.

In an indiscrete space the only clopen subsets are X and Ø.

Exercises 1.2

1. List all 64 subsets of the set X in Example 1.1.2. Write down, next to each set, whether

it is (i) clopen; (ii) neither open nor closed; (iii) open but not closed; (iv) closed but not

open.

2. Let (X,τ ) be a topological space with the property that every subset is closed. Prove that

it is a discrete space.

1We admit that “clopen� is an ugly word but its use is now widespread.
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3. Observe that if (X,τ ) is a discrete space or an indiscrete space,then every open set is a

clopen set. Find a topology τ on the set X = {a, b, c, d} which is not discrete and is not

indiscrete but has the property that every open set is clopen.

4. Let X be an infinite set. If τ is a topology on X such that every infinite subset of X is

closed, prove that τ is the discrete topology.

5. Let X be an infinite set and τ a topology on X with the property that the only infinite

subset of X which is open is X itself. Is (X,τ ) necessarily an indiscrete space?

6. (i) Let τ be a topology on a set X such that τ consists of precisely four

sets; that is, τ = {X,Ø, A,B}, where A and B are non-empty distinct proper subsets

of X. [A is a proper subset of X means that A ⊆ X and A �= X. This is denoted by

A ⊂ X.] Prove that A and B must satisfy exactly one of the following conditions:

(a) B = X \ A; (b) A ⊂ B; (c) B ⊂ A.

[Hint. Firstly show that A and B must satisfy at least one of the conditions and then

show that they cannot satisfy more than one of the conditions.]

(ii) Using (i) list all topologies on X = {1, 2, 3, 4} which consist of exactly four sets.
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1.3 The Finite-Closed Topology

It is usual to define a topology on a set by stating which sets are open. However, sometimes

it is more natural to describe the topology by saying which sets are closed. The next definition

provides one such example.

1.3.1 Definition. Let X be any non-empty set. A topology τ on X is called the finite-

closed topology or the cofinite topology if the closed subsets of X are X and all finite subsets

of X; that is, the open sets are Ø and all subsets of X which have finite complements.

Once again it is necessary to check that τ in Definition 1.3.1 is indeed a topology; that is,

that it satisfies each of the conditions of Definitions 1.1.1.

Note that Definition 1.3.1 does not say that every topology which has X and the finite

subsets of X closed is the finite-closed topology. These must be the only closed sets. [Of

course, in the discrete topology on any set X, the set X and all finite subsets of X are indeed

closed, but so too are all other subsets of X.]

In the finite-closed topology all finite sets are closed. However, the following example shows

that infinite subsets need not be open sets.

1.3.2 Example. If N is the set of all positive integers, then sets such as {1}, {5, 6, 7}, {2, 4, 6, 8}
are finite and hence closed in the finite-closed topology. Thus their complements

{2, 3, 4, 5, . . .}, {1, 2, 3, 4, 8, 9, 10, . . .}, {1, 3, 5, 7, 9, 10, 11, . . .}

are open sets in the finite-closed topology. On the other hand, the set of even positive integers is

not a closed set since it is not finite and hence its complement, the set of odd positive integers,

is not an open set in the finite-closed topology.

So while all finite sets are closed, not all infinite sets are open.
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1.3.3 Example. Let τ be the finite-closed topology on a set X. If X has at least 3 distinct

clopen subsets, prove that X is a finite set.

Proof.

We are given that τ is the finite-closed topology, and that there are at least 3 distinct

clopen subsets.

We are required to prove that X is a finite set.

Recall that τ is the finite-closed topology means that the family of all closed sets

consists of X and all finite subsets of X. Recall also that a set is clopen if and only if

it is both closed and open.

Remember that in every topological space there are at least 2 clopen sets, namely

X and Ø. (See the comment immediately following Definition 1.2.6.) But we are told

that in the space (X,τ ) there are at least 3 clopen subsets. This implies that there is a

clopen subset other than Ø and X. So we shall have a careful look at this other clopen

set!

As our space (X,τ ) has 3 distinct clopen subsets, we know that there is a clopen subset

S of X such that S �= X and S �= Ø. As S is open in (X,τ ), Definition 1.2.4 implies that its

complement X \ S is a closed set.

Thus S and X \S are closed in the finite-closed topology τ . Therefore S and X \S are both

finite, since neither equals X. But X = S ∪ (X \S) and so X is the union of two finite sets. Thus

X is a finite set, as required.

We now know three distinct topologies we can put on any infinite set – and there are many

more. The three we know are the discrete topology, the indiscrete topology, and the finite-closed

topology. So we must be careful always to specify the topology on a set.

For example, the set {n : n ≥ 10} is open in the finite-closed topology on the set of natural

numbers, but is not open in the indiscrete topology. The set of odd natural numbers is open in

the discrete topology on the set of natural numbers, but is not open in the finite-closed topology.
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We shall now record some definitions which you have probably met before.

1.3.4 Definitions. Let f be a function from a set X into a set Y .

(i) The function f is said to be one-to-one or injective if f(x1) = f(x2) implies x1 = x2,

for x1, x2 ∈ X;

(ii) The function f is said to be onto or surjective if for each y ∈ Y there exists an x ∈ X

such that f(x) = y;

(iii) The function f is said to be bijective if it is both one-to-one and onto.

1.3.5 Definitions. Let f be a function from a set X into a set Y . The function f is said

to have an inverse if there exists a function g of Y into X such that g(f(x)) = x, for all

x ∈ X and f(g(y)) = y, for all y ∈ Y . The function g is called an inverse function of f .

The proof of the following proposition is left as an exercise for you.

1.3.6 Proposition. Let f be a function from a set X into a set Y .

(i) The function f has an inverse if and only if f is bijective.

(ii) Let g1 and g2 be functions from Y into X. If g1 and g2 are both inverse functions of f ,

then g1 = g2; that is, g1(y) = g2(y), for all y ∈ Y .

(iii) Let g be a function from Y into X. Then g is an inverse function of f if and only if f

is an inverse function of g.

Warning. It is a very common error for students to think that a function is one-to-one if “it

maps one point to one point�.

All functions map one point to one point. Indeed this is part of the definition of a function.

A one-to-one function is a function that maps different points to different points.
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We now turn to a very important notion that you may not have met before.

1.3.7 Definition. Let f be a function from a set X into a set Y . If S is any subset of

Y , then the set f−1(S) is defined by

f−1(S) = {x : x ∈ X and f(x) ∈ S}.

The subset f−1(S) of X is said to be the inverse image of S.

Note that an inverse function of f : X → Y exists if and only if f is bijective. But the inverse

image of any subset of Y exists even if f is neither one-to-one nor onto. The next example

demonstrates this.

1.3.8 Example. Let f be the function from the set of integers, Z, into itself given by f(z) = |z|,
for each z ∈ Z.

The function f is not one-to one, since f(1) = f(−1).

It is also not onto, since there is no z ∈ Z, such that f(z) = −1. So f is certainly not

bijective. Hence, by Proposition 1.3.6 (i), f does not have an inverse function. However inverse

images certainly exist. For example,

f−1({1, 2, 3}) = {−1,−2,−3, 1, 2, 3}

f−1({−5, 3, 5, 7, 9}) = {−3,−5,−7,−9, 3, 5, 7, 9}. �
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We conclude this section with an interesting example.

1.3.9 Example. Let (Y,τ ) be a topological space and X a non-empty set. Further, let f be

a function from X into Y . Put τ 1 = {f−1(S) : S ∈ τ }. Prove that τ 1 is a topology on X.

Proof.

Our task is to show that the collection of sets, τ 1, is a topology on X; that is, we have

to show that τ 1 satisfies conditions (i), (ii) and (iii) of Definitions

1.1.1.

X ∈ τ 1 since X = f−1(Y ) and Y ∈ τ .

Ø ∈ τ 1 since Ø = f−1(Ø) and Ø ∈ τ .

Therefore τ 1 has property (i) of Definitions 1.1.1.

To verify condition (ii) of Definitions 1.1.1, let {Aj : j ∈ J} be a collection of members of

τ 1 , for some index set J . We have to show that
⋃

j∈J Aj ∈ τ 1. As Aj ∈ τ 1, the definition

of τ 1 implies that Aj = f−1(Bj), where Bj ∈ τ . Also
⋃

j∈J Aj =
⋃

j∈J f
−1(Bj) = f−1

(⋃
j∈J Bj

)
.

[See Exercises 1.3 # 1.]

Now Bj ∈ τ , for all j ∈ J , and so
⋃

j∈J Bj ∈ τ , since τ is a topology on Y . Therefore, by

the definition of τ 1, f
−1
(⋃

j∈J Bj

)
∈ τ 1; that is,

⋃
j∈J Aj ∈ τ 1.

So τ 1 has property (ii) of Definitions 1.1.1.

[Warning. You are reminded that not all sets are countable. (See the Appendix for comments

on countable sets.) So it would not suffice, in the above argument, to assume that sets

A1, A2. . . . , An, . . . are in τ 1 and show that their union A1 ∪ A2 ∪ . . . ∪ An ∪ . . . is in τ 1. This

would prove only that the union of a countable number of sets in τ 1 lies in τ 1, but would not

show that τ 1 has property (ii) of Definitions 1.1.1 – this property requires all unions, whether

countable or uncountable, of sets in τ 1 to be in τ 1.]

Finally, let A1 and A2 be in τ 1. We have to show that A1 ∩ A2 ∈ τ 1.

As A1, A2 ∈ τ 1, A1 = f−1(B1) and A2 = f−1(B2), where B1, B2 ∈ τ .

A1 ∩ A2 = f−1(B1) ∩ f−1(B2) = f−1(B1 ∩B2). [See Exercises 1.3 #1.]
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As B1 ∩ B2 ∈ τ , we have f−1(B1 ∩ B2) ∈ τ 1. Hence A1 ∩ A2 ∈ τ 1, and we have shown that

τ 1 also has property (iii) of Definitions 1.1.1.

So τ 1 is indeed a topology on X.

Exercises 1.3

1. Let f be a function from a set X into a set Y . Then we stated in Example 1.3.9 that

f−1
(⋃
j∈J

Bj

)
=
⋃
j∈J

f−1(Bj) (1)

and

f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2) (2)

for any subsets Bj of Y , and any index set J .

(a) Prove that (1) is true.

[Hint. Start your proof by letting x be any element of the set on the left-hand side and

show that it is in the set on the right-hand side. Then do the reverse.]

(b) Prove that (2) is true.

(c) Find (concrete) sets A1, A2, X, and Y and a function f : X → Y such that f(A1∩A2) �=
f(A1) ∩ f(A2), where A1 ⊆ X and A2 ⊆ X.

2. Is the topology τ described in Exercises 1.1 #6 (ii) the finite-closed topology? (Justify your

answer.)
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3. A topological space (X,τ ) is said to be a T1-space if every singleton set {x} is closed

in (X,τ ). Show that precisely two of the following nine topological spaces are T1-spaces.

(Justify your answer.)

(i) a discrete space;

(ii) an indiscrete space with at least two points;

(iii) an infinite set with the finite-closed topology;

(iv) Example 1.1.2;

(v) Exercises 1.1 #5 (i);

(vi) Exercises 1.1 #5 (ii);

(vii) Exercises 1.1 #5 (iii);

(viii) Exercises 1.1 #6 (i);

(ix) Exercises 1.1 #6 (ii).

4. Let τ be the finite-closed topology on a set X. If τ is also the discrete topology, prove

that the set X is finite.

5. A topological space (X,τ ) is said to be a T0-space if for each pair of distinct points a, b

in X, either there exists an open set containing a and not b, or there exists an open set

containing b and not a.

(i) Prove that every T1-space is a T0-space.

(ii) Which of (i)–(vi) in Exercise 3 above are T0-spaces? (Justify your answer.)

(iii) Put a topology τ on the set X = {0, 1} so that (X,τ ) will be a T0-space but not a

T1-space. [The topological space you obtain is called the Sierpinski space.]

(iv) Prove that each of the topological spaces described in Exercises 1.1 #6 is a T0-space.

(Observe that in Exercise 3 above we saw that neither is a T1-space.)

6. Let X be any infinite set. The countable-closed topology is defined to be the topology

having as its closed sets X and all countable subsets of X. Prove that this is indeed a

topology on X.

7. Let τ 1 and τ 2 be two topologies on a set X. Prove each of the following statements.
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(i) If τ 3 is defined by τ 3 = τ 1 ∪ τ 2, then τ 3 is not necessarily a topology on X. (Justify

your answer, by finding a concrete example.)

(ii) If τ 4 is defined by τ 4 = τ 1 ∩ τ 2, then τ 4 is a topology on X. (The topology τ 4 is

said to be the intersection of the topologies τ 1 and τ 2.)

(iii) If (X,τ 1) and (X,τ 2) are T1-spaces, then (X,τ 4) is also a T1-space.

(iv) If (X,τ 1) and (X,τ 2) are T0-spaces, then (X,τ 4) is not necessarily a T0-space. (Justify

your answer by finding a concrete example.)

(v) If τ 1,τ 2, . . . ,τ n are topologies on a set X, then τ =
n⋂

i=1

τ i is a topology on X.

(vi) If for each i ∈ I, for some index set I, each τ i is a topology on the set X, then

τ =
⋂
i∈I

τ i is a topology on X.

1.4 Postscript

In this chapter we introduced the fundamental notion of a topological space. As examples we saw

various finite spaces, as well as discrete spaces, indiscrete spaces and spaces with the finite-closed

topology. None of these is a particularly important example as far as applications are concerned.

However, in Exercises 4.3 #8, it is noted that every infinite topological space “contains� an

infinite topological space with one of the five topologies: the indiscrete topology, the discrete

topology, the finite-closed topology, the initial segment topology, or the final segment topology

of Exercises 1.1 #6. In the next chapter we describe the very important euclidean topology.

En route we met the terms “open set� and “closed set� and we were warned that these

names can be misleading. Sets can be both open and closed, neither open nor closed, open but

not closed, or closed but not open. It is important to remember that we cannot prove that a set

is open by proving that it is not closed.

Other than the definitions of topology, topological space, open set, and closed set the most

significant topic covered was that of writing proofs.

In the opening comments of this chapter we pointed out the importance of learning to write

proofs. In Example 1.1.8, Proposition 1.1.9, and Example 1.3.3 we have seen how to “think

through� a proof. It is essential that you develop your own skill at writing proofs. Good exercises

to try for this purpose include Exercises 1.1 #8, Exercises 1.2 #2,4, and Exercises 1.3 #1,4.
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Some students are confused by the notion of topology as it involves “sets of sets�. To check

your understanding, do Exercises 1.1 #3.

The exercises included the notions of T0-space and T1-space which will be formally introduced

later. These are known as separation properties.

Finally we emphasize the importance of inverse images. These are dealt with in Example

1.3.9 and Exercises 1.3 #1. Our definition of continuous mapping will rely on inverse images.



Chapter 2

The Euclidean Topology

Introduction

In a movie or a novel there are usually a few central characters about whom the plot revolves.

In the story of topology, the euclidean topology on the set of real numbers is one of the central

characters. Indeed it is such a rich example that we shall frequently return to it for inspiration

and further examination.

Let R denote the set of all real numbers. In Chapter 1 we defined three topologies that can

be put on any set: the discrete topology, the indiscrete topology and the finite-closed topology.

So we know three topologies that can be put on the set R. Six other topologies on R were

defined in Exercises 1.1 #5 and #9. In this chapter we describe a much more important and

interesting topology on R which is known as the euclidean topology.

An analysis of the euclidean topology leads us to the notion of “basis for a topology�. In

the study of Linear Algebra we learn that every vector space has a basis and every vector is a

linear combination of members of the basis. Similarly, in a topological space every open set can

be expressed as a union of members of the basis. Indeed, a set is open if and only if it is a union

of members of the basis.

29
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2.1 The Euclidean Topology on RRR

2.1.1 Definition. A subset S of R is said to be open in the euclidean topology on R if

it has the following property:

(∗) For each x ∈ S, there exist a, b in R, with a < b, such that x ∈ (a, b) ⊆ S.

Notation. Whenever we refer to the topological space R without specifying the topology, we

mean R with the euclidean topology.

2.1.2 Remarks. (i) The “euclidean topology� τ is a topology.

Proof.

We are required to show that τ satisfies conditions (i), (ii), and (iii) of Definitions

1.1.1.

We are given that a set is in τ if and only if it has property ∗.

Firstly, we show that R ∈ τ . Let x ∈ R. If we put a = x−1 and b = x+1, then x ∈ (a, b) ⊆ R;

that is, R has property ∗ and so R ∈ τ . Secondly, Ø ∈ τ as Ø has property ∗ by default.

Now let {Aj : j ∈ J}, for some index set J , be a family of members of τ . Then we have to

show that
⋃

j∈J Aj ∈ τ ; that is, we have to show that
⋃

j∈J Aj has property ∗. Let x ∈
⋃

j∈J Aj.

Then x ∈ Ak, for some k ∈ J . As Ak ∈ τ , there exist a and b in R with a < b such that

x ∈ (a, b) ⊆ Ak. As k ∈ J , Ak ⊆
⋃

j∈J Aj and so x ∈ (a, b) ⊆
⋃

j∈J Aj. Hence
⋃

j∈J Aj has property

∗ and thus is in τ , as required.

Finally, let A1 and A2 be in τ . We have to prove that A1 ∩ A2 ∈ τ . So let y ∈ A1 ∩ A2.

Then y ∈ A1. As A1 ∈ τ , there exist a and b in R with a < b such that y ∈ (a, b) ⊆ A1. Also

y ∈ A2 ∈ τ . So there exist c and d in R with c < d such that y ∈ (c, d) ⊆ A2. Let e be the greater

of a and c, and f the smaller of b and d. It is easily checked that e < y < f, and so y ∈ (e, f). As

(e, f) ⊆ (a, b) ⊆ A1 and (e, f) ⊆ (c, d) ⊆ A2, we deduce that y ∈ (e, f) ⊆ A1 ∩ A2. Hence A1 ∩ A2

has property ∗ and so is in τ .

Thus τ is indeed a topology on R. �
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We now proceed to describe the open sets and the closed sets in the euclidean topology on

R. In particular, we shall see that all open intervals are indeed open sets in this topology and all

closed intervals are closed sets.

(ii) Let r, s ∈ R with r < s. In the euclidean topology τ on R, the open interval (r, s) does

indeed belong to τ and so is an open set.

Proof.

We are given the open interval (r, s).

We must show that (r, s) is open in the euclidean topology; that is, we have to show

that (r, s) has property (∗) of Definition 2.1.1.

So we shall begin by letting x ∈ (r, s). We want to find a and b in R with a < b such

that x ∈ (a, b) ⊆ (r, s).

Let x ∈ (r, s). Choose a = r and b = s. Then clearly

x ∈ (a, b) ⊆ (r, s).

So (r, s) is an open set in the euclidean topology. �

(iii) The open intervals (r,∞) and (−∞, r) are open sets in R, for every real number r.

Proof.

Firstly, we shall show that (r,∞) is an open set; that is, that it has property (∗).

To show this we let x ∈ (r,∞) and seek a, b ∈ R such that

x ∈ (a, b) ⊆ (r,∞).

Let x ∈ (r,∞). Put a = r and b = x+ 1. Then x ∈ (a, b) ⊆ (r,∞) and so (r,∞) ∈ τ .

A similar argument shows that (−∞, r) is an open set in R. �
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(iv) It is important to note that while every open interval is an open set in R, the converse

is false. Not all open sets in R are intervals. For example, the set (1, 3) ∪ (5, 6) is an open set in

R, but it is not an open interval. Even the set
⋃∞

n=1(2n, 2n+ 1) is an open set in R. �

(v) For each c and d in R with c < d, the closed interval [c, d] is not an open set in R.

Proof.

We have to show that [c, d] does not have property (∗).

To do this it suffices to find any one x such that there is no a, b having property (∗).

Obviously c and d are very special points in the interval [c, d]. So we shall choose

x = c and show that no a, b with the required property exist.

We use the method of proof called proof by contradiction. We suppose that a and

b exist with the required property and show that this leads to a contradiction, that is

something which is false. Consequently the supposition is false! Hence no such a and

b exist. Thus [c, d] does not have property (∗) and so is not an open set.

Observe that c ∈ [c, d]. Suppose there exist a and b in R with a < b such that c ∈ (a, b) ⊆ [c, d].

Then c ∈ (a, b) implies a < c < b and so a < c+a
2

< c < b. Thus c+a
2

∈ (a, b) and c+a
2

/∈ [c, d]. Hence

(a, b) �⊆ [c, d], which is a contradiction. So there do not exist a and b such that c ∈ (a, b) ⊆ [c, d].

Hence [c, d] does not have property (∗) and so [c, d] /∈ τ . �

(vi) For each a and b in R with a < b, the closed interval [a, b] is a closed set in the euclidean

topology on R.

Proof. To see that it is closed we have to observe only that its complement (−∞, a) ∪ (b,∞),

being the union of two open sets, is an open set. �

(vii) Each singleton set {a} is closed in R.

Proof. The complement of {a} is the union of the two open sets (−∞, a) and (a,∞) and so is

open. Therefore {a} is closed in R, as required.

[In the terminology of Exercises 1.3 #3, this result says that R is a T1-space.] �
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(viii) Note that we could have included (vii) in (vi) simply by replacing “a < b� by “a ≤ b�.

The singleton set {a} is just the degenerate case of the closed interval [a, b]. �

(ix) The set Z of all integers is a closed subset of R.

Proof. The complement of Z is the union
⋃∞

n=−∞(n, n+ 1) of open subsets (n, n+ 1) of R and

so is open in R. Therefore Z is closed in R. �

(x) The set Q of all rational numbers is neither a closed subset of R nor an open subset of

R.

Proof.

We shall show that Q is not an open set by proving that it does not have property (∗).

To do this it suffices to show that Q does not contain any interval (a, b), with a < b.

Suppose that (a, b) ⊆ Q, where a and b are in R with a < b. Between any two distinct real

numbers there is an irrational number. (Can you prove this?) Therefore there exists c ∈ (a, b)

such that c /∈ Q. This contradicts (a, b) ⊆ Q. Hence Q does not contain any interval (a, b), and

so is not an open set.

To prove that Q is not a closed set it suffices to show that R \ Q is not an open set. Using

the fact that between any two distinct real numbers there is a rational number we see that R \Q

does not contain any interval (a, b) with a < b. So R \ Q is not open in R and hence Q is not

closed in R. �

(xi) In Chapter 3 we shall prove that the only clopen subsets of R are the trivial ones,

namely R and Ø. �
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Exercises 2.1

1. Prove that if a, b ∈ R with a < b then neither [a, b) nor (a, b] is an open subset of R. Also

show that neither is a closed subset of R.

2. Prove that the sets [a,∞) and (−∞, a] are closed subsets of R.

3. Show, by example, that the union of an infinite number of closed subsets of R is not

necessarily a closed subset of R.

4. Prove each of the following statements.

(i) The set Z of all integers is not an open subset of R.

(ii) The set S of all prime numbers is a closed subset of R but not an open subset of R.

(iii) The set P of all irrational numbers is neither a closed subset nor an open subset of R.

5. If F is a non-empty finite subset of R, show that F is closed in R but that F is not open in

R.

6. If F is a non-empty countable subset of R, prove that F is not an open set.

7. (i) Let S = {0, 1, 1/2, 1/3, 1/4, 1/5, . . . , 1/n, . . .}. Prove that the set S is closed in the

euclidean topology on R.

(ii) Is the set T = {1, 1/2, 1/3, 1/4, 1/5, . . . , 1/n, . . .} closed in R?

(iii) Is the set {
√
2, 2

√
2, 3

√
2, . . . , n

√
2, . . . } closed in R?

8. (i) Let (X,τ ) be a topological space. A subset S of X is said to be an Fσ-set if it is the

union of a countable number of closed sets. Prove that all open intervals (a, b) and all

closed intervals [a, b], are Fσ-sets in R.

(ii) Let (X,τ ) be a topological space. A subset T of X is said to be a Gδ-set if it is the

intersection of a countable number of open sets. Prove that all open intervals (a, b)

and all closed intervals [a, b] are Gδ-sets in R.

(iii) Prove that the set Q of rationals is an Fσ-set in R. (In Exercises 6.5#3 we prove that

Q is not a Gδ-set in R.)

(iv) Verify that the complement of an Fσ-set is a Gδ-set and the complement of a Gδ-set

is an Fσ-set.
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2.2 Basis for a Topology

Remarks 2.1.2 allow us to describe the euclidean topology on R in a much more convenient

manner. To do this, we introduce the notion of a basis for a topology.

2.2.1 Proposition. A subset S of R is open if and only if it is a union of open intervals.

Proof.

We are required to prove that S is open if and only if it is a union of open intervals;

that is, we have to show that

(i) if S is a union of open intervals, then it is an open set, and

(ii) if S is an open set, then it is a union of open intervals.

Assume that S is a union of open intervals; that is, there exist open intervals (aj, bj), where j

belongs to some index set J , such that S =
⋃

j∈J(aj, bj). By Remarks 2.1.2 (ii) each open interval

(aj, bj) is an open set. Thus S is a union of open sets and so S is an open set.

Conversely, assume that S is open in R. Then for each x ∈ S, there exists an interval

Ix = (a, b) such that x ∈ Ix ⊆ S. We now claim that S =
⋃

x∈S Ix.

We are required to show that the two sets S and
⋃

x∈S Ix are equal.

These sets are shown to be equal by proving that

(i) if y ∈ S, then y ∈
⋃

x∈S Ix, and

(ii) if z ∈
⋃

x∈S Ix, then z ∈ S.

[Note that (i) is equivalent to the statement S ⊆
⋃

x∈S Ix, while (ii) is equivalent to⋃
x∈S Ix ⊆ S.]

Firstly let y ∈ S. Then y ∈ Iy. So y ∈
⋃

x∈S Ix, as required. Secondly, let z ∈
⋃

x∈S Ix. Then

z ∈ It, for some t ∈ S. As each Ix ⊆ S, we see that It ⊆ S and so z ∈ S. Hence S =
⋃

x∈S Ix, and

we have that S is a union of open intervals, as required.
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The above proposition tells us that in order to describe the topology of R it suffices to say

that all intervals (a, b) are open sets. Every other open set is a union of these open sets. This

leads us to the following definition.

2.2.2 Definition. Let (X,τ ) be a topological space. A collection B of open subsets of

X is said to be a basis for the topology τ if every open set is a union of members of B.

If B is a basis for a topology τ on a set X then a subset U of X is in τ if and only if it is a

union of members of B. So B “generates� the topology τ in the following sense: if we are told

what sets are members of B then we can determine the members of τ – they are just all the sets

which are unions of members of B.

2.2.3 Example. Let B = {(a, b) : a, b ∈ R, a < b}. Then B is a basis for the euclidean topology

on R, by Proposition 2.2.1. �

2.2.4 Example. Let (X,τ ) be a discrete space and B the family of all singleton subsets of

X; that is, B = {{x} : x ∈ X}. Then, by Proposition 1.1.9, B is a basis for τ . �

2.2.5 Example. Let X = {a, b, c, d, e, f} and

τ 1 = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e, f}}.

Then B = {{a}, {c, d}, {b, c, d, e, f}} is a basis for τ 1 as B ⊆ τ 1 and every member of τ 1 can be

expressed as a union of members of B. (Observe that Ø is an empty union of members of B.)

Note that τ 1 itself is also a basis for τ 1. �

2.2.6 Remark. Observe that if (X,τ ) is a topological space then B = τ is a basis for the

topology τ . So, for example, the set of all subsets of X is a basis for the discrete topology on X.

We see, therefore, that there can be many different bases for the same topology. Indeed

if B is a basis for a topology τ on a set X and B1 is a collection of subsets of X such that

B ⊆ B1 ⊆ τ , then B1 is also a basis for τ . [Verify this.] �
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As indicated above the notion of “basis for a topology� allows us to define topologies.

However the following example shows that we must be careful.

2.2.7 Example. Let X = {a, b, c} and B = {{a}, {c}, {a, b}, {b, c}}. Then B is not a basis for

any topology on X. To see this, suppose that B is a basis for a topology τ . Then τ consists

of all unions of sets in B; that is,

τ = {X,Ø, {a}, {c}, {a, c}, {a, b}, {b, c}}.

(Once again we use the fact that Ø is an empty union of members of B and so Ø ∈ τ .)

However, τ is not a topology since the set {b} = {a, b}∩ {b, c} is not in τ and so τ does not

have property (iii) of Definitions 1.1.1. This is a contradiction, and so our supposition is false.

Thus B is not a basis for any topology on X. �

Thus we are led to ask: if B is a collection of subsets of X, under what conditions is B a

basis for a topology? This question is answered by Proposition 2.2.8.
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2.2.8 Proposition. Let X be a non-empty set and let B be a collection of subsets of X.

Then B is a basis for a topology on X if and only if B has the following properties:

(a) X =
⋃

B∈B
B, and

(b) for any B1, B2 ∈ B, the set B1 ∩B2 is a union of members of B.

Proof. If B is a basis for a topology τ then τ must have the properties (i), (ii), and (iii) of

Definitions 1.1.1. In particular X must be an open set and the intersection of any two open sets

must be an open set. As the open sets are just the unions of members of B, this implies that (a)

and (b) above are true.

Conversely, assume that B has properties (a) and (b) and let τ be the collection of all subsets

of X which are unions of members of B. We shall show that τ is a topology on X. (If so then

B is obviously a basis for this topology τ and the proposition is true.)

By (a), X =
⋃

B∈B B and so X ∈ τ . Note that Ø is an empty union of members of B and so

Ø ∈ τ . So we see that τ does have property (i) of Definitions 1.1.1.

Now let {Tj} be a family of members of τ . Then each Tj is a union of members of B. Hence
the union of all the Tj is also a union of members of B and so is in τ . Thus τ also satisfies

condition (ii) of Definitions 1.1.1.

Finally let C and D be in τ . We need to verify that C ∩D ∈ τ . But C =
⋃

k∈K Bk, for some

index set K and sets Bk ∈ B. Also D =
⋃

j∈J Bj, for some index set J and Bj ∈ B. Therefore

C ∩D =

( ⋃
k∈K

Bk

) ⋂ (⋃
j∈J

Bj

)
=

⋃
k∈K, j∈J

(Bk ∩Bj).

You should verify that the two expressions for C ∩D are indeed equal!

In the finite case this involves statements like

(B1 ∪B2) ∩ (B3 ∪B4) = (B1 ∩B3) ∪ (B1 ∩B4) ∪ (B2 ∩B3) ∪ (B2 ∩B4).

By our assumption (b), each Bk ∩Bj is a union of members of B and so C ∩D is a union of

members of B. Thus C ∩D ∈ τ . So τ has property (iii) of Definition 1.1.1. Hence τ is indeed

a topology, and B is a basis for this topology, as required. �
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Proposition 2.2.8 is a very useful result. It allows us to define topologies by simply writing

down a basis. This is often easier than trying to describe all of the open sets.

We shall now use this Proposition to define a topology on the plane. This topology is known

as the “euclidean topology�.

2.2.9 Example. Let B be the collection of all “open rectangles�

{〈x, y〉 : 〈x, y〉 ∈ R2, a < x < b, c < y < d} in the plane which have each side parallel to the X-

or Y -axis.
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Then B is a basis for a topology on the plane. This topology is called the euclidean topology.

Whenever we use the symbol R2 we mean the plane, and if we refer to R2 as a topological

space without explicitly saying what the topology is, we mean the plane with the euclidean

topology.

To see that B is indeed a basis for a topology, observe that (i) the plane is the union of all of

the open rectangles, and (ii) the intersection of any two rectangles is a rectangle. [By “rectangle�

we mean one with sides parallel to the axes.] So the conditions of Proposition 2.2.8 are satisfied

and hence B is a basis for a topology. �

2.2.10 Remark. By generalizing Example 2.2.9 we see how to put a topology on

Rn = {〈x1, x2, . . . , xn〉 : xi ∈ R, i = 1, . . . , n}, for each integer n > 2.

We let B be the collection of all subsets {〈x1, x2, . . . , xn〉 ∈ Rn : ai < xi < bi, i = 1, 2, . . . , n} of

Rn with sides parallel to the axes. This collection B is a basis for the euclidean topology on Rn.�
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Exercises 2.2

1. In this exercise you will prove that disc {〈x, y〉 : x2 + y2 < 1} is an open subset of R2, and

then that every open disc in the plane is an open set.

(i) Let 〈a, b〉 be any point in the disc D = {〈x, y〉 : x2 + y2 < 1}. Put r =
√
a2 + b2. Let

R〈a,b〉 be the open rectangle with vertices at the points 〈a± 1−r
8

, b± 1−r
8
〉. Verify that

R〈a,b〉 ⊂ D.

(ii) Using (i) show that

D =
⋃

〈a,b〉∈D
R〈a,b〉.

(iii) Deduce from (ii) that D is an open set in R2.

(iv) Show that every disc {〈x, y〉 : (x− a)2 + (y − b)2 < c2, a, b, c ∈ R} is open in R2.

2. In this exercise you will show that the collection of all open discs in R2 is a basis for a

topology on R2. [Later we shall see that this is the euclidean topology.]

(i) Let D1 and D2 be any open discs in R2 with D1∩D2 �= Ø. If 〈a, b〉 is any point in D1∩D2,

show that there exists an open disc D〈a,b〉 with centre 〈a, b〉 such that D〈a,b〉 ⊂ D1 ∩D2.

[Hint: draw a picture and use a method similar to that of Exercise 1 (i).]

(ii) Show that

D1 ∩D2 =
⋃

〈a,b〉∈D1∩D2

D〈a,b〉.

(iii) Using (ii) and Proposition 2.2.8, prove that the collection of all open discs in R2 is a

basis for a topology on R2.

3. Let B be the collection of all open intervals (a, b) in R with a < b and a and b rational

numbers. Prove that B is a basis for the euclidean topology on R. [Compare this with

Proposition 2.2.1 and Example 2.2.3 where a and b were not necessarily rational.]

[Hint: do not use Proposition 2.2.8 as this would show only that B is a basis for some

topology not necessarily a basis for the euclidean topology.]
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4. A topological space (X,τ ) is said to satisfy the second axiom of countability if there exists

a basis B for τ such that B consists of only a countable number of sets.

(i) Using Exercise 3 above show that R satisfies the second axiom of countability.

(ii) Prove that the discrete topology on an uncountable set does not satisfy the second

axiom of countability.

[Hint. It is not enough to show that one particular basis is uncountable. You must

prove that every basis for this topology is uncountable.]

(iii) Prove that Rn satisfies the second axiom of countability, for each positive integer n.

(iv) Let (X,τ ) be the set of all integers with the finite-closed topology. Does the space

(X,τ ) satisfy the second axiom of countability?

5. Prove the following statements.

(i) Let m and c be real numbers, with m �= 0. Then the line L = {〈x, y〉 : y = mx+ c} is a

closed subset of R2.

(ii) Let S1 be the unit circle given by S1 = {〈x, y〉 ∈ R2 : x2 + y2 = 1}. Then S1 is a closed

subset of R2.

(iii) Let Sn be the unit n-sphere given by

Sn = {〈x1, x2, . . . , xn, xn+1〉 ∈ Rn+1 : x2
1 + x2

2 + · · ·+ x2
n+1 = 1}.

Then Sn is a closed subset of Rn+1.

(iv) Let Bn be the closed unit n-ball given by

Bn = {〈x1, x2, . . . , xn〉 ∈ Rn : x2
1 + x2

2 + · · ·+ x2
n ≤ 1}.

Then Bn is a closed subset of Rn.

(v) The curve C = {〈x, y〉 ∈ R2 : xy = 1} is a closed subset of R2.

6. Let B1 be a basis for a topology τ 1 on a set X and B2 a basis for a topology τ 2 on a set Y .

The set X ×Y consists of all ordered pairs 〈x, y〉, x ∈ X and y ∈ Y . Let B be the collection

of subsets of X × Y consisting of all the sets B1 × B2 where B1 ∈ B1 and B2 ∈ B2. Prove

that B is a basis for a topology on X × Y . The topology so defined is called the product

topology on X × Y .

[Hint. See Example 2.2.9.]
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7. Using Exercise 3 above and Exercises 2.1 #8, prove that every open subset of R is an Fσ-set

and a Gδ-set.

2.3 Basis for a Given Topology

Proposition 2.2.8 told us under what conditions a collection B of subsets of a set X is a basis for

some topology on X. However sometimes we are given a topology τ on X and we want to know

whether B is a basis for this specific topology τ . To verify that B is a basis for τ we could simply

apply Definition 2.2.2 and show that every member of τ is a union of members of B. However,

Proposition 2.3.2 provides us with an alternative method.

But first we present an example which shows that there is a difference between saying that a

collection B of subsets of X is a basis for some topology, and saying that it is a basis for a given

topology.

2.3.1 Example. Let B be the collection of all half-open intervals of the form (a, b], a < b,

where (a, b] = {x : x ∈ R, a < x ≤ b}. Then B is a basis for a topology on R, since R is the union

of all members of B and the intersection of any two half-open intervals is a half-open interval.

However, the topology τ 1 which has B as its basis, is not the euclidean topology on R. We

can see this by observing that (a, b] is an open set in R with topology τ 1, while (a, b] is not an

open set in R with the euclidean topology. (See Exercises 2.1 #1.) So B is a basis for some

topology but not a basis for the euclidean topology on R. �
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2.3.2 Proposition. Let (X,τ ) be a topological space. A family B of open subsets of X

is a basis for τ if and only if for any point x belonging to any open set U , there is a B ∈ B
such that x ∈ B ⊆ U.

Proof.

We are required to prove that

(i) if B is a basis for τ and x ∈ U ∈ τ , then there exists a B ∈ B such that x ∈ B ⊆ U ,

and

(ii) if for each U ∈ τ and x ∈ U there exists a B ∈ B such that x ∈ B ⊆ U , then B is

a basis for τ .

Assume B is a basis for τ and x ∈ U ∈ τ . As B is a basis for τ , the open set U is a union

of members of B; that is, U =
⋃

j∈J Bj, where Bj ∈ B, for each j in some index set J . But x ∈ U

implies x ∈ Bj, for some j ∈ J . Thus x ∈ Bj ⊆ U , as required.

Conversely, assume that for each U ∈ τ and each x ∈ U , there exists a B ∈ B with x ∈ B ⊆ U .

We have to show that every open set is a union of members of B. So let V be any open set.

Then for each x ∈ V , there is a Bx ∈ B such that x ∈ Bx ⊆ V . Clearly V =
⋃

x∈V Bx. (Check

this!) Thus V is a union of members of B. �

2.3.3 Proposition. Let B be a basis for a topology τ on a set X. Then a subset U of

X is open if and only if for each x ∈ U there exists a B ∈ B such that x ∈ B ⊆ U .

Proof. Let U be any subset of X. Assume that for each x ∈ U , there exists a Bx ∈ B such that

x ∈ Bx ⊆ U . Clearly U =
⋃

x∈U Bx. So U is a union of open sets and hence is open, as required.

The converse statement follows from Proposition 2.3.2. �

Observe that the basis property described in Proposition 2.3.3 is precisely what we used in

defining the euclidean topology on R. We said that a subset U of R is open if and only if for

each x ∈ U , there exist a and b in R with a < b, such that x ∈ (a, b) ⊆ U.
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Warning. Make sure that you understand the difference between Proposition 2.2.8 and Proposition

2.3.2. Proposition 2.2.8 gives conditions for a family B of subsets of a set X to be a basis for

some topology on X. However, Proposition 2.3.2 gives conditions for a family B of subsets of a

topological space (X,τ ) to be a basis for the given topology τ .

We have seen that a topology can have many different bases. The next proposition tells us

when two bases B1 and B2 on the same set X define the same topology.

2.3.4 Proposition. Let B1 and B2 be bases for topologies τ 1 and τ 2, respectively, on a

non-empty set X. Then τ 1 = τ 2 if and only if

(i) for each B ∈ B1 and each x ∈ B, there exists a B
′ ∈ B2 such that x ∈ B

′ ⊆ B, and

(ii) for each B ∈ B2 and each x ∈ B, there exists a B
′ ∈ B1 such that x ∈ B

′ ⊆ B.

Proof.

We are required to show that B1 and B2 are bases for the same topology if and only if

(i) and (ii) are true.

Firstly we assume that they are bases for the same topology, that is τ 1 = τ 2, and

show that conditions (i) and (ii) hold.

Next we assume that (i) and (ii) hold and show that τ 1 = τ 2.

Firstly, assume that τ 1 = τ 2. Then (i) and (ii) are immediate consequences of Proposition

2.3.2.

Conversely, assume that B1 and B2 satisfy the conditions (i) and (ii). By Proposition 2.3.2,

(i) implies that each B ∈ B1 is open in (X,τ 2); that is, B1 ⊆ τ 2. As every member of τ 1 is a

union of members of τ 2 this implies τ 1 ⊆ τ 2. Similarly (ii) implies τ 2 ⊆ τ 1. Hence τ 1 = τ 2, as

required. �
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2.3.5 Example. Show that the set B of all “open equilateral triangles� with base parallel to

the X-axis is a basis for the euclidean topology on R2. (By an “open triangle� we mean that the

boundary is not included.)

Outline Proof. (We give here only a pictorial argument. It is left to you to write a detailed

proof.)

We are required to show that B is a basis for the euclidean topology.

We shall apply Proposition 2.3.4, but first we need to show that B is a basis for some

topology on R2.

To do this we show that B satisfies the conditions of Proposition 2.2.8.
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The first thing we observe is that B is a basis for some topology because it satisfies the

conditions of Proposition 2.2.8. (To see that B satisfies Proposition 2.2.8, observe that R2 equals

the union of all open equilateral triangles with base parallel to the X-axis, and that the intersection

of two such triangles is another such triangle.)

Next we shall show that the conditions (i) and (ii) of Proposition 2.3.4 are satisfied.

Firstly we verify condition (i). Let R be an open rectangle with sides parallel to the axes and

any x any point in R. We have to show that there is an open equilateral triangle T with base

parallel to the X-axis such that x ∈ T ⊆ R. Pictorially this is easy to see.
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Finally we verify condition (ii) of Proposition 2.3.4. Let T ′ be an open equilateral triangle

with base parallel to the X-axis and let y be any point in T ′. Then there exists an open rectangle

R′ such that y ∈ R′ ⊆ T ′. Pictorially, this is again easy to see.
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So the conditions of Proposition 2.3.4 are satisfied. Thus B is indeed a basis for the euclidean

topology on R2. �

In Example 2.2.9 we defined a basis for the euclidean topology to be the collection of all

“open rectangles� (with sides parallel to the axes). Example 2.3.5 shows that “open rectangles�

can be replaced by “open equilateral triangles� (with base parallel to the X-axis) without changing

the topology. In Exercises 2.3 #1 we see that the conditions above in brackets can be dropped

without changing the topology. Also “open rectangles� can be replaced by “open discs�1.

1In fact, most books describe the euclidean topology on R
2 in terms of open discs.
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Exercises 2.3

1. Determine whether or not each of the following collections is a basis for the euclidean

topology on R2 :

(i) the collection of all “open� squares with sides parallel to the axes;

(ii) the collection of all “open� discs;

(iii) the collection of all “open� squares;

(iv) the collection of all “open� rectangles.

(v) the collection of all “open� triangles

2. (i) Let B be a basis for a topology on a non-empty set X. If B1 is a collection of subsets

of X such that τ ⊇ B1 ⊇ B, prove that B1 is also a basis for τ .

(ii) Deduce from (i) that there exist an uncountable number of distinct bases for the

euclidean topology on R.

3. Let B = {(a, b] : a, b ∈ R, a < b}. As seen in Example 2.3.1, B is a basis for a topology τ on

R and τ is not the euclidean topology on R. Nevertheless, show that each interval (a, b) is

open in (R,τ ).

4.* Let C[0, 1] be the set of all continuous real-valued functions on [0, 1].

(i) Show that the collection M, where M = {M(f, ε) : f ∈ C[0, 1] and ε is a positive real

number} and M(f, ε) =
{
g : g ∈ C[0, 1] and

∫ 1

0

|f − g| < ε
}
, is a basis for a topology

τ 1 on C[0, 1].

(ii) Show that the collection U , where U = {U(f, ε) : f ∈ C[0, 1] and ε is a positive real

number} and U(f, ε) = {g : g ∈ C[0, 1] and supx∈[0,1] | f(x)− g(x) |< ε}, is a basis for a

topology τ 2 on C[0, 1].

(iii) Prove that τ 1 �= τ 2.
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5. Let (X,τ ) be a topological space. A non-empty collection S of open subsets of X is said

to be a subbasis for τ if the collection of all finite intersections of members of S forms a

basis for τ .

(i) Prove that the collection of all open intervals of the form (a,∞) or (−∞, b) is a subbasis

for the euclidean topology on R.

(ii) Prove that S = {{a}, {a, c, d}, {b, c, d, e, f}} is a subbasis for the topology τ 1 of Example

1.1.2.

6. Let S be a subbasis for a topology τ on the set R. (See Exercise 5 above.) If all of the

closed intervals [a, b], with a < b, are in S, prove that τ is the discrete topology.

7. Let X be a non-empty set and S the collection of all sets X \ {x}, x ∈ X. Prove S is a

subbasis for the finite-closed topology on X.

8. Let X be any infinite set and τ the discrete topology on X. Find a subbasis S for τ such

that S does not contain any singleton sets.

9. Let S be the collection of all straight lines in the plane R2. If S is a subbasis for a topology

τ on the set R 2, what is the topology?

10. Let S be the collection of all straight lines in the plane which are parallel to the X-axis. If

S is a subbasis for a topology τ on R2, describe the open sets in (R2,τ ).

11. Let S be the collection of all circles in the plane. If S is a subbasis for a topology τ on R2,

describe the open sets in (R2,τ ).

12. Let S be the collection of all circles in the plane which have their centres on the X-axis. If

S is a subbasis for a topology τ on R2, describe the open sets in (R2,τ ).
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2.4 Postscript

In this chapter we have defined a very important topological space – R, the set of all real numbers

with the euclidean topology, and spent some time analyzing it. We observed that, in this topology,

open intervals are indeed open sets (and closed intervals are closed sets). However, not all open

sets are open intervals. Nevertheless, every open set in R is a union of open intervals. This led us

to introduce the notion of “basis for a topology� and to establish that the collection of all open

intervals is a basis for the euclidean topology on R.

In the introduction to Chapter 1 we described a mathematical proof as a watertight argument

and underlined the importance of writing proofs. In this chapter we were introduced to proof by

contradiction in Remarks 2.1.2 (v) with another example in Example 2.2.7. Proving “necessary

and sufficient� conditions, that is, “if and only if� conditions, was explained in Proposition 2.2.1,

with further examples in Propositions 2.2.8, 2.3.2, 2.3.3, and 2.3.4.

Bases for topologies is a significant topic in its own right. We saw, for example, that the

collection of all singletons is a basis for the discrete topology. Proposition 2.2.8 gives necessary

and sufficient conditions for a collection of subsets of a set X to be a basis for some topology

on X. This was contrasted with Proposition 2.3.2 which gives necessary and sufficient conditions

for a collection of subsets of X to be a basis for the given topology on X. It was noted that

two different collections B1 and B2 can be bases for the same topology. Necessary and sufficient

conditions for this are given by Proposition 2.3.4.

We defined the euclidean topology on Rn, for n any positive integer. We saw that the family

of all open discs is a basis for R2, as is the family of all open squares, or the family of all open

rectangles.

The exercises introduced three interesting ideas. Exercises 2.1 #8 covered the notions of

Fσ-set and Gδ-set which are important in measure theory. Exercises 2.3 #4 introduced the space

of continuous real-valued functions. Such spaces are called function spaces which are the central

objects of study in functional analysis. Functional analysis is a blend of (classical) analysis and

topology, and was for some time called modern analysis, cf. Simmons [169]. Finally, Exercises

2.3 #5–12 dealt with the notion of subbasis.



Chapter 3

Limit Points

Introduction

On the real number line we have a notion of “closeness�. For example each point in the sequence

.1, .01, .001, .0001, .00001, . . . is closer to 0 than the previous one. Indeed, in some sense, 0 is a

limit point of this sequence. So the interval (0, 1] is not closed, as it does not contain the limit

point 0. In a general topological space we do not have a “distance function�, so we must proceed

differently. We shall define the notion of limit point without resorting to distances. Even with

our new definition of limit point, the point 0 will still be a limit point of (0, 1] . The introduction

of the notion of limit point will lead us to a much better understanding of the notion of closed

set.

Another very important topological concept we shall introduce in this chapter is that of

connectedness. Consider the topological space R. While the sets [0, 1] ∪ [2, 3] and [4, 6] could

both be described as having length 2, it is clear that they are different types of sets . . . the first

consists of two disjoint pieces and the second of just one piece. The difference between the two

is “topological� and will be exposed using the notion of connectedness.

50
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3.1 Limit Points and Closure

If (X,τ ) is a topological space then it is usual to refer to the elements of the set X as points.

3.1.1 Definition. Let A be a subset of a topological space (X,τ ). A point x ∈ X is

said to be a limit point (or accumulation point or cluster point) of A if every open set, U ,

containing x contains a point of A different from x.

3.1.2 Example. Consider the topological space (X,τ ) where the set X = {a, b, c, d, e}, the
topology τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e}}, and A = {a, b, c}. Then b, d, and e are limit

points of A but a and c are not limit points of A.

Proof.

The point a is a limit point of A if and only if every open set containing a contains

another point of the set A.

So to show that a is not a limit point of A, it suffices to find even one open set

which contains a but contains no other point of A.

The set {a} is open and contains no other point of A. So a is not a limit point of A.

The set {c, d} is an open set containing c but no other point of A. So c is not a limit point

of A.

To show that b is a limit point of A, we have to show that every open set containing b

contains a point of A other than b.

We shall show this is the case by writing down all of the open sets containing b and

verifying that each contains a point of A other than b.

The only open sets containing b are X and {b, c, d, e} and both contain another element of

A, namely c. So b is a limit point of A.

The point d is a limit point of A, even though it is not in A. This is so since every open set

containing d contains a point of A. Similarly e is a limit point of A even though it is not in A.�
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3.1.3 Example. Let (X,τ ) be a discrete space and A a subset of X. Then A has no limit

points, since for each x ∈ X, {x} is an open set containing no point of A different from x. �

3.1.4 Example. Consider the subset A = [a, b) of R. Then it is easily verified that every

element in [a, b) is a limit point of A. The point b is also a limit point of A. �

3.1.5 Example. Let (X,τ ) be an indiscrete space and A a subset of X with at least two

elements. Then it is readily seen that every point of X is a limit point of A. (Why did we insist

that A have at least two points?) �

The next proposition provides a useful way of testing whether a set is closed or not.

3.1.6 Proposition. Let A be a subset of a topological space (X,τ ). Then A is closed in

(X,τ ) if and only if A contains all of its limit points.

Proof.

We are required to prove that A is closed in (X,τ ) if and only if A contains all of its

limit points; that is, we have to show that

(i) if A is a closed set, then it contains all of its limit points, and

(ii) if A contains all of its limit points, then it is a closed set.

Assume that A is closed in (X,τ ). Suppose that p is a limit point of A which belongs to

X \A. Then X \A is an open set containing the limit point p of A. Therefore X \A contains an

element of A. This is clearly false and so we have a contradiction to our supposition. Therefore

every limit point of A must belong to A.

Conversely, assume that A contains all of its limit points. For each z ∈ X \A, our assumption

implies that there exists an open set Uz � z such that Uz ∩A = Ø; that is, Uz ⊆ X \A. Therefore
X\A =

⋃
z∈X\A Uz. (Check this!) So X\A is a union of open sets and hence is open. Consequently

its complement, A, is closed. �
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3.1.7 Example. As applications of Proposition 3.1.6 we have the following:

(i) the set [a, b) is not closed in R, since b is a limit point and b /∈ [a, b);

(ii) the set [a, b] is closed in R, since all the limit points of [a, b] (namely all the elements of

[a, b]) are in [a, b];

(iii) (a, b) is not a closed subset of R, since it does not contain the limit point a;

(iv) [a,∞) is a closed subset of R. �

3.1.8 Proposition. Let A be a subset of a topological space (X,τ ) and A′ the set of all

limit points of A. Then A ∪ A′ is a closed set.

Proof. From Proposition 3.1.6 it suffices to show that the set A ∪ A′ contains all of its limit

points or equivalently that no element of X \ (A ∪ A′) is a limit point of A ∪ A′.

Let p ∈ X \ (A∪A′). As p /∈ A′, there exists an open set U containing p with U ∩A = {p} or

Ø. But p /∈ A, so U ∩ A = Ø. We claim also that U ∩ A′ = Ø. For if x ∈ U then as U is an open

set and U ∩A = Ø, x /∈ A′. Thus U ∩A′ = Ø. That is, U ∩ (A ∪A′) = Ø, and p ∈ U. This implies

p is not a limit point of A ∪ A′ and so A ∪ A′ is a closed set. �

3.1.9 Definition. Let A be a subset of a topological space (X,τ ). Then the set A ∪ A′

consisting of A and all its limit points is called the closure of A and is denoted by A.

3.1.10 Remark. It is clear from Proposition 3.1.8 that A is a closed set. By Proposition

3.1.6 and Exercises 3.1 #5 (i), every closed set containing A must also contain the set A′. So

A ∪ A′ = A is the smallest closed set containing A. This implies that A is the intersection of all

closed sets containing A. �
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3.1.11 Example. Let X = {a, b, c, d, e} and

τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e}}.

Show that {b} = {b, e}, {a, c} = X, and {b, d} = {b, c, d, e}.

Proof.

To find the closure of a particular set, we shall find all the closed sets containing that

set and then select the smallest. We therefore begin by writing down all of the closed

sets – these are simply the complements of all the open sets.

The closed sets are Ø, X, {b, c, d, e}, {a, b, e}, {b, e} and {a}. So the smallest closed set

containing {b} is {b, e}; that is, {b} = {b, e}. Similarly {a, c} = X, and {b, d} = {b, c, d, e}. �

3.1.12 Example. Let Q be the subset of R consisting of all the rational numbers. Prove that

Q = R.

Proof. Suppose Q �= R. Then there exists an x ∈ R \Q. As R\Q is open in R, there exist a, b

with a < b such that x ∈ (a, b) ⊆ R \ Q. But in every interval (a, b) there is a rational number q;

that is, q ∈ (a, b). So q ∈ R \ Q which implies q ∈ R \ Q. This is a contradiction, as q ∈ Q. Hence

Q = R. �

3.1.13 Definition. Let A be a subset of a topological space (X,τ ). Then A is said to

be dense in X or everywhere dense in X if A = X.

We can now restate Example 3.1.12 as: Q is a dense subset of R.

Note that in Example 3.1.11 we saw that {a, c} is dense in X.

3.1.14 Example. Let (X,τ ) be a discrete space. Then every subset of X is closed (since its

complement is open). Therefore the only dense subset of X is X itself, since each subset of X is

its own closure. �
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3.1.15 Proposition. Let A be a subset of a topological space (X,τ ). Then A is dense

in X if and only if every non-empty open subset of X intersects A non-trivially (that is, if

U ∈ τ and U �= Ø then A ∩ U �= Ø.)

Proof. Assume, firstly that every non-empty open set intersects A non-trivially. If A = X, then

clearly A is dense in X. If A �= X, let x ∈ X \ A. If U ∈ τ and x ∈ U then U ∩ A �= Ø. So x is a

limit point of A. As x is an arbitrary point in X \ A, every point of X \ A is a limit point of A.

So A′ ⊇ X \ A and then, by Definition 3.1.9, A = A′ ∪ A = X; that is, A is dense in X.

Conversely, assume A is dense in X. Let U be any non-empty open subset of X. Suppose

U ∩A = Ø. Then if x ∈ U , x /∈ A and x is not a limit point of A, since U is an open set containing

x which does not contain any element of A. This is a contradiction since, as A is dense in X,

every element of X \ A is a limit point of A. So our supposition is false and U ∩ A �= Ø, as

required. �

Exercises 3.1

1. (a) In Example 1.1.2, find all the limit points of the following sets:

(i) {a},

(ii) {b, c},

(iii) {a, c, d},

(iv) {b, d, e, f}.

(b) Hence, find the closure of each of the above sets.

(c) Now find the closure of each of the above sets using the method of Example 3.1.11.

2. Let (Z,τ ) be the set of integers with the finite-closed topology. List the set of limit points

of the following sets:

(i) A = {1, 2, 3, . . . , 10},

(ii) The set, E, consisting of all even integers.
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3. Find all the limit points of the open interval (a, b) in R, where a < b.

4. (a) What is the closure in R of each of the following sets?

(i) {1, 1
2
, 1
3
, 1
4
, . . . , 1

n
, . . . },

(ii) the set Z of all integers,

(iii) the set P of all irrational numbers.

(b) Let S be a subset of R and a ∈ R. Prove that a ∈ S if and only if for each positive

integer n, there exists an xn ∈ S such that |xn − a| < 1
n
.

5. Let S and T be non-empty subsets of a topological space (X,τ ) with S ⊆ T .

(i) If p is a limit point of the set S, verify that p is also a limit point of the set T .

(ii) Deduce from (i) that S ⊆ T .

(iii) Hence show that if S is dense in X, then T is dense in X.

(iv) Using (iii) show that R has an uncountable number of distinct dense subsets.

(v)* Again using (iii), prove that R has an uncountable number of distinct countable dense

subsets and 2c distinct uncountable dense subsets.

3.2 Neighbourhoods

3.2.1 Definition. Let (X,τ ) be a topological space, N a subset of X and p a point in

X. Then N is said to be a neighbourhood of the point p if there exists an open set U such

that p ∈ U ⊆ N.

3.2.2 Example. The closed interval [0, 1] in R is a neighbourhood of the point 1
2
, since

1
2
∈ (1

4
, 3
4
) ⊆ [0, 1]. �

3.2.3 Example. The interval (0, 1] in R is a neighbourhood of the point 1
4
, as 1

4
∈ (0, 1

2
) ⊆ (0, 1].

But (0, 1] is not a neighbourhood of the point 1. (Prove this.) �
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3.2.4 Example. If (X,τ ) is any topological space and U ∈ τ , then from Definition 3.2.1, it

follows that U is a neighbourhood of every point p ∈ U. So, for example, every open interval (a, b)

in R is a neighbourhood of every point that it contains. �

3.2.5 Example. Let (X,τ ) be a topological space, and N a neighbourhood of a point p. If

S is any subset of X such that N ⊆ S, then S is a neighbourhood of p. �

The next proposition is easily verified, so its proof is left to the reader.

3.2.6 Proposition. Let A be a subset of a topological space (X,τ ). A point x ∈ X is a

limit point of A if and only if every neighbourhood of x contains a point of A different from

x. �

As a set is closed if and only if it contains all its limit points we deduce the following:

3.2.7 Corollary. Let A be a subset of a topological space (X,τ ). Then the set A is closed

if and only if for each x ∈ X \ A there is a neighbourhood N of x such that N ⊆ X \ A. �

3.2.8 Corollary. Let U be a subset of a topological space (X,τ ). Then U ∈ τ if and

only if for each x ∈ U there exists a neighbourhood N of x such that N ⊆ U. �

The next corollary is readily deduced from Corollary 3.2.8.

3.2.9 Corollary. Let U be a subset of a topological space (X,τ ). Then U ∈ τ if and

only if for each x ∈ U there exists a V ∈ τ such that x ∈ V ⊆ U. �

Corollary 3.2.9 provides a useful test of whether a set is open or not. It says that a set is

open if and only if it contains an open set about each of its points.
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Exercises 3.2

1. Let A be a subset of a topological space (X,τ ). Prove that A is dense in X if and only if

every neighbourhood of each point in X \ A intersects A non-trivially.

2. (i) Let A and B be subsets of a topological space (X,τ ). Prove carefully that

A ∩B ⊆ A ∩B.

(ii) Construct an example in which

A ∩B �= A ∩B.

3. Let (X,τ ) be a topological space. Prove that τ is the finite-closed topology on X if and

only if (i) (X,τ ) is a T1-space, and (ii) every infinite subset of X is dense in X.

4. A topological space (X,τ ) is said to be separable if it has a dense subset which is countable.

Determine which of the following spaces are separable:

(i) the set R with the usual topology;

(ii) a countable set with the discrete topology;

(iii) a countable set with the finite-closed topology;

(iv) (X,τ ) where X is finite;

(v) (X,τ ) where τ is finite;

(vi) an uncountable set with the discrete topology;

(vii) an uncountable set with the finite-closed topology;

(viii) a space (X,τ ) satisfying the second axiom of countability.
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5. Let (X,τ ) be any topological space and A any subset of X. The largest open set contained

in A is called the interior of A and is denoted by Int(A). [It is the union of all open sets in

X which lie wholly in A.]

(i) Prove that in R, Int([0, 1]) = (0, 1).

(ii) Prove that in R, Int((3, 4)) = (3, 4).

(iii) Show that if A is open in (X,τ ) then Int(A) = A.

(iv) Verify that in R, Int({3}) = Ø.

(v) Show that if (X,τ ) is an indiscrete space then, for all proper subsets A ofX, Int(A) = Ø.

(vi) Show that for every countable subset A of R, Int(A) = Ø.

6. Show that if A is any subset of a topological space (X,τ ), then Int(A) = X \ (X \ A). (See
Exercise 5 above for the definition of Int.)

7. Using Exercise 6 above, verify that A is dense in (X,τ ) if and only if Int(X \ A) = Ø.

8. Using the definition of Int in Exercise 5 above, determine which of the following statements

are true for arbitrary subsets A1 and A2 of a topological space (X,τ )?

(i) Int(A1 ∩ A2) = Int(A1) ∩ Int(A2),

(ii) Int(A1 ∪ A2) = Int(A1) ∪ Int(A2),

(iii) A1 ∪ A2 = A1 ∪ A2.

(If your answer to any part is “true� you must write a proof. If your answer is “false� you

must give a concrete counterexample.)

9.* Let S be a dense subset of a topological space (X,τ ). Prove that for every open subset U

of X, S ∩ U = U.

10. Let S and T be dense subsets of a space (X,τ ). If T is also open, deduce from Exercise 9

above that S ∩ T is dense in X.
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11. Let B = {[a, b) : a ∈ R, b ∈ Q, a < b}. Prove each of the following statements.

(i) B is a basis for a topology τ 1 on R. (The space (R,τ 1) is called the Sorgenfrey line.)

(ii) If τ is the Euclidean topology on R, then τ 1 ⊃ τ .

(iii) For all a, b ∈ R with a < b, [a, b) is a clopen set in (R,τ 1).

(iv) The Sorgenfrey line is a separable space.

(v)* The Sorgenfrey line does not satisfy the second axiom of countability.

3.3 Connectedness

3.3.1 Remark. We record here some definitions and facts you should already know. Let S

be any set of real numbers. If there is an element b in S such that x ≤ b, for all x ∈ S, then b is

said to be the greatest element of S. Similarly if S contains an element a such that a ≤ x, for

all x ∈ S, then a is called the least element of S. A set S of real numbers is said to be bounded

above if there exists a real number c such that x ≤ c, for all x ∈ S, and c is called an upper

bound for S. Similarly the terms “bounded below� and “lower bound� are defined. A set which

is bounded above and bounded below is said to be bounded. �

Least Upper Bound Axiom: Let S be a non-empty set of real numbers. If S is bounded above,

then it has a least upper bound. �

The least upper bound, also called the supremum, of S may or may not belong to the set

S. Indeed, the supremum of S is an element of S if and only if S has a greatest element. For

example, the supremum of the open interval S = (1, 2) is 2 but 2 /∈ (1, 2), while the supremum of

[3, 4] is 4 which does lie in [3, 4] and 4 is the greatest element of [3, 4]. Any set of real numbers

which is bounded below has a greatest lower bound which is also called the infimum.
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3.3.2 Lemma. Let S be a subset of R which is bounded above and let p be the supremum

of S. If S is a closed subset of R, then p ∈ S.

Proof. Suppose p ∈ R \ S. As R \ S is open there exist real numbers a and b with a < b such

that p ∈ (a, b) ⊆ R\S. As p is the least upper bound for S and a < p, it is clear that there exists

an x ∈ S such that a < x. Also x < p < b, and so x ∈ (a, b) ⊆ R \ S. But this is a contradiction,

since x ∈ S. Hence our supposition is false and p ∈ S. �

3.3.3 Proposition. Let T be a clopen subset of R. Then either T = R or T = Ø.

Proof. Suppose T �= R and T �= Ø. Then there exists an element x ∈ T and an element

z ∈ R \ T . Without loss of generality, assume x < z. Put S = T ∩ [x, z]. Then S, being the

intersection of two closed sets, is closed. It is also bounded above, since z is obviously an upper

bound. Let p be the supremum of S. By Lemma 3.3.2, p ∈ S. Since p ∈ [x, z], p ≤ z. As

z ∈ R \ S, p �= z and so p < z.

Now T is also an open set and p ∈ T . So there exist a and b in R with a < b such that

p ∈ (a, b) ⊆ T . Let t be such that p < t < min(b, z), where min(b, z) denotes the smaller of b and

z. So t ∈ T and t ∈ [p, z]. Thus t ∈ T ∩ [x, z] = S. This is a contradiction since t > p and p is the

supremum of S. Hence our supposition is false and consequently T = R or T = Ø. �

3.3.4 Definition. Let (X,τ ) be a topological space. Then it is said to be connected if

the only clopen subsets of X are X and Ø.

So restating Proposition 3.3.3 we obtain:

3.3.5 Proposition. The topological space R is connected. �
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3.3.6 Example. If (X,τ ) is any discrete space with more than one element, then (X,τ ) is

not connected as each singleton set is clopen. �

3.3.7 Example. If (X,τ ) is any indiscrete space, then it is connected as the only clopen sets

are X and Ø. (Indeed the only open sets are X and Ø.) �

3.3.8 Example. If X = {a, b, c, d, e} and

τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e}},

then (X,τ ) is not connected as {b, c, d, e} is a clopen subset. �

3.3.9 Remark. From Definition 3.3.4 it follows that a topological space (X,τ ) is not

connected (that is, it is disconnected) if and only if there are non-empty open sets A and B

such that A ∩B = Ø and A ∪B = X.1 (See Exercises 3.3 #3.)

We conclude this section by recording that R2 (and indeed, Rn, for each n ≥ 1) is a connected

space. However the proof is delayed to Chapter 5.

Connectedness is a very important property about which we shall say a lot more.

Exercises 3.3

1. Let S be a set of real numbers and T = {x : −x ∈ S}.

(a) Prove that the real number a is the infimum of S if and only if −a is the supremum of

T .

(b) Using (a) and the Least Upper Bound Axiom prove that every non-empty set of real

numbers which is bounded below has a greatest lower bound.

1Most books use this property to define connectedness.
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2. For each of the following sets of real numbers find the greatest element and the least upper

bound, if they exist.

(i) S = R.

(ii) S = Z = the set of all integers.

(iii) S = [9, 10).

(iv) S = the set of all real numbers of the form 1− 3
n2 , where n is a positive integer.

(v) S = (−∞, 3].

3. Let (X,τ ) be any topological space. Prove that (X,τ ) is not connected if and only if it

has proper non-empty disjoint open subsets A and B such that A ∪B = X.

4. Is the space (X,τ ) of Example 1.1.2 connected?

5. Let (X,τ ) be any infinite set with the finite-closed topology. Is (X,τ ) connected?

6. Let (X,τ ) be an infinite set with the countable-closed topology. Is (X,τ ) connected?

7. Which of the topological spaces of Exercises 1.1 #9 are connected?

3.4 Postscript

In this chapter we have introduced the notion of limit point and shown that a set is closed if and

only if it contains all its limit points. Proposition 3.1.8 then tells us that any set A has a smallest

closed set A which contains it. The set A is called the closure of A.

A subset A of a topological space (X,τ ) is said to be dense in X if A = X. We saw that Q is

dense in R and the set P of all irrational numbers is also dense in R. We introduced the notion of

neighbourhood of a point and the notion of connected topological space. We proved an important

result, namely that R is connected. We shall have much more to say about connectedness later.

In the exercises we introduced the notion of interior of a set, this being complementary to

that of closure of a set.



Chapter 4

Homeomorphisms

Introduction

In each branch of mathematics it is essential to recognize when two structures are equivalent.

For example two sets are equivalent, as far as set theory is concerned, if there exists a bijective

function which maps one set onto the other. Two groups are equivalent, known as isomorphic, if

there exists a a homomorphism of one to the other which is one-to-one and onto. Two topological

spaces are equivalent, known as homeomorphic, if there exists a homeomorphism of one onto the

other.

4.1 Subspaces

4.1.1 Definition. Let Y be a non-empty subset of a topological space (X,τ ). The

collection τ Y = {O ∩ Y : O ∈ τ } of subsets of Y is a topology on Y called the subspace

topology (or the relative topology or the induced topology or the topology induced on Y

by τ ). The topological space (Y,τ Y ) is said to be a subspace of (X,τ ).

Of course you should check that TY is indeed a topology on Y .

64
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4.1.2 Example. Let X = {a, b, c, d, e, f, },

τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e, f}}

and Y = {b, c, e}. Then the subspace topology on Y is

τ Y = {Y,Ø, {c}}. �

4.1.3 Example. Let X = {a, b, c, d, e},

τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e}},

and Y = {a, d, e}. Then the induced topology on Y is

τ Y = {Y,Ø, {a}, {d}, {a, d}, {d, e}}. �

4.1.4 Example. Let B be a basis for the topology τ on X and let Y be a subset of X. Then

it is not hard to show that the collection BY = {B ∩ Y : B ∈ B} is a basis for the subspace

topology τ Y on Y . [Exercise: verify this.]

So let us consider the subset (1, 2) of R. A basis for the induced topology on (1, 2) is the

collection {(a, b) ∩ (1, 2) : a, b ∈ R, a < b}; that is, {(a, b) : a, b ∈ R, 1 ≤ a < b ≤ 2} is a basis for

the induced topology on (1, 2). �

4.1.5 Example. Consider the subset [1, 2] of R. A basis for the subspace topology τ on [1, 2]

is

{(a, b) ∩ [1, 2] : a, b ∈ R, a < b};

that is,

{(a, b) : 1≤ a < b≤ 2} ∪ {[1, b) : 1 < b≤ 2} ∪ {(a, 2] : 1≤ a < 2} ∪ {[1, 2]}

is a basis for τ .

But here we see some surprising things happening; e.g. [1, 11
2
) is certainly not an open set in

R, but [1, 11
2
) = (0, 11

2
) ∩ [1, 2], [1, 11

2
) is an open set in the subspace [1, 2].

Also (1, 2] is not open in R but is open in [1, 2]. Even [1, 2] is not open in R, but is an open

set in [1, 2].

So whenever we speak of a set being open we must make perfectly clear in what space or

what topology it is an open set. �
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4.1.6 Example. Let Z be the subset of R consisting of all the integers. Prove that the

topology induced on Z by the euclidean topology on R is the discrete topology.

Proof.

To prove that the induced topology, τ Z, on Z is discrete, it suffices, by Proposition

1.1.9, to show that every singleton set in Z is open in τ Z; that is, if n ∈ Z then {n} ∈ τ Z

Let n ∈ Z. Then {n} = (n− 1, n+1)∩Z. But (n− 1, n+1) is open in R and therefore {n} is

open in the induced topology on Z. Thus every singleton set in Z is open in the induced topology

on Z. So the induced topology is discrete. �

Notation. Whenever we refer to

Q = the set of all rational numbers,

Z = the set of all integers,

N = the set of all positive integers,

P = the set of all irrational numbers,

(a, b), [a, b], [a, b), (−∞, a), (−∞, a], (a,∞), or [a,∞)

as topological spaces without explicitly saying what the topology is, we mean the topology induced

as a subspace of R. (Sometimes we shall refer to the induced topology on these sets as the “usual

topology�.)

Exercises 4.1

1. Let X = {a, b, c, d, e} and τ = {X,Ø, {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}}. List the

members of the induced topologies τ Y on Y = {a, c, e} and τ Z on Z = {b, c, d, e}.
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2. Describe the topology induced on the set N of positive integers by the euclidean topology

on R.

3. Write down a basis for the usual topology on each of the following:

(i) [a, b), where a < b;

(ii) (a, b], where a < b;

(iii) (−∞, a];

(iv) (−∞, a);

(v) (a,∞);

(vi) [a,∞).

[Hint: see Examples 4.1.4 and 4.1.5.]

4. Let A ⊆ B ⊆ X and X have the topology τ . Let τ B be the subspace topology on B.

Further let τ 1 be the topology induced on A by τ , and τ 2 be the topology induced on A

by τ B. Prove that τ 1 = T2. (So a subspace of a subspace is a subspace.)

5. Let (Y,τ Y ) be a subspace of a space (X,τ ). Show that a subset Z of Y is closed in (Y,τ Y )

if and only if Z = A ∩ Y , where A is a closed subset of (X,τ ).

6. Show that every subspace of a discrete space is discrete.

7. Show that every subspace of an indiscrete space is indiscrete.

8. Show that the subspace [0, 1] ∪ [3, 4] of R has at least 4 clopen subsets. Exactly how many

clopen subsets does it have?

9. Is it true that every subspace of a connected space is connected?

10. Let (Y,τ Y ) be a subspace of (X,τ ). Show that τ Y ⊆ τ if and only if Y ∈ τ .

[Hint: Remember Y ∈ τ Y .]

11. Let A and B be connected subspaces of a topological space (X,τ ). If A ∩ B �= Ø, prove

that the subspace A ∪B is connected.
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12. Let (Y,τ 1) be a subspace of a T1-space (X,τ ). Show that (Y,τ 1) is also a T1-space.

13. A topological space (X,τ ) is said to be Hausdorff (or a T2-space) if given any pair of distinct

points a, b in X there exist open sets U and V such that a ∈ U , b ∈ V , and U ∩ V = Ø.

(i) Show that R is Hausdorff.

(ii) Prove that every discrete space is Hausdorff.

(iii) Show that any T2-space is also a T1-space.

(iv) Show that Z with the finite-closed topology is a T1-space but is not a T2-space.

(v) Prove that any subspace of a T2-space is a T2-space.

14. Let (Y,τ 1) be a subspace of a topological space (X,τ ). If (X,τ ) satisfies the second axiom

of countability, show that (Y,τ 1) also satisfies the second axiom of countability.

15. Let a and b be in R with a < b. Prove that [a, b] is connected.

[Hint: In the statement and proof of Proposition 3.3.3 replace R everywhere by [a, b].]

16. Let Q be the set of all rational numbers with the usual topology and let P be the set of all

irrational numbers with the usual topology.

(i) Prove that neither Q nor P is a discrete space.

(ii) Is Q or P a connected space?

(iii) Is Q or P a Hausdorff space?

(iv) Does Q or P have the finite-closed topology?

17. A topological space (X,τ ) is said to be a regular space if for any closed subset A of X

and any point x ∈ X \ A, there exist open sets U and V such that x ∈ U , A ⊆ V , and

U ∩ V = Ø. If (X,τ ) is regular and a T1-space, then it is said to be a T3-space. Prove the

following statements.

(i) Every subspace of a regular space is a regular space.

(ii) The spaces R, Z, Q, P, and R 2 are regular spaces.

(iii) If (X,τ ) is a regular T1-space, then it is a T2-space.
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(iv) The Sorgenfrey line is a regular space.

(v)* Let X be the set, R, of all real numbers and S = { 1
n
: n ∈ N}. Define a set C ⊆ R to

be closed if C = A∪ T , where A is closed in the euclidean topology on R and T is any

subset of S. The complements of these closed sets form a topology τ on R which is

Hausdorff but not regular.

4.2 Homeomorphisms

We now turn to the notion of equivalent topological spaces. We begin by considering an example:

X = {a, b, c, d, e}, Y = {g, h, i, j, k},

τ = {X,Ø, {a}, {c, d}, {a, c, d}.{b, c, d, e}}

and

τ 1 = {Y,Ø, {g}, {i, j}, {g, i, j}, {h, i, j, k}}.

It is clear that in an intuitive sense (X,τ ) is “equivalent� to (Y,τ 1). The function f : X → Y

defined by f(a) = g, f(b) = h, f(c) = i, f(d) = j, and f(e) = k, provides the equivalence. We

now formalize this.

4.2.1 Definition. Let (X,τ ) and (Y,τ 1) be topological spaces. Then they are said to

be homeomorphic if there exists a function f : X → Y which has the following properties:

(i) f is one-to-one (that is f(x1) = f(x2) implies x1 = x2),

(ii) f is onto (that is, for any y ∈ Y there exists an x ∈ X such that f(x) = y),

(iii) for each U ∈ τ 1, f−1(U) ∈ τ , and

(iv) for each V ∈ τ , f(V ) ∈ τ 1.

Further, the map f is said to be a homeomorphism between (X,τ ) and (Y,τ 1). We

write (X,τ ) ∼= (Y,τ 1).

�
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We shall show that “∼=� is an equivalence relation and use this to show that all open intervals

(a, b) are homeomorphic to each other. Example 4.2.2 is the first step, as it shows that “∼=� is a

transitive relation.

4.2.2 Example. Let (X,τ ), (Y,τ 1) and (Z,τ 2) be topological spaces. If (X,τ ) ∼= (Y,τ 1)

and (Y,τ 1) ∼= (Z,τ 2), prove that (X,τ ) ∼= (Z, T2).

Proof.

We are given that (X, τ ) ∼= (Y, τ 1); that is, there exists a homeomorphism f : (X, τ ) →
(Y, τ 1). We are also given that (Y, τ 1) ∼= (Z, τ 2); that is, there exists a homeomorphism

g : (Y, τ 1) → (Z, τ 2).

We are required to prove that (X, τ ) ∼= (Z, τ 2); that is, we need to find a

homeomorphism h : (X, τ ) → (Z, τ 2). We will prove that the composite map

g ◦ f : X → Z is the required homeomorphism.

As (X,τ ) ∼= (Y,τ 1) and (Y,τ 1) ∼= (Z,τ 2), there exist homeomorphisms f : (X, T ) → (Y,τ 1)

and g : (Y,τ 1) → (Z,τ 2). Consider the composite map g ◦ f : X → Z. [Thus g ◦ f(x) = g(f(x)),

for all x ∈ X.] It is a routine task to verify that g ◦ f is one-to-one and onto. Now let U ∈ τ 2.

Then, as g is a homeomorphism g−1(U) ∈ τ 1. Using the fact that f is a homeomorphism we

obtain that f−1(g−1(U)) ∈ τ . But f−1(g−1(U)) = (g ◦ f)−1(U). So g ◦ f has property (iii) of

Definition 4.2.1. Next let V ∈ τ . Then f(V ) ∈ T1 and so g(f(V )) ∈ τ 2; that is g ◦ f(V ) ∈ τ 2

and we see that g ◦ f has property (iv) of Definition 4.2.1. Hence g ◦ f is a homeomorphism. �
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4.2.3 Remark. Example 4.2.2 shows that “∼=� is a transitive relation. Indeed it is easily

verified that it is an equivalence relation; that is,

(i) (X,τ ) ∼= (X,τ ) [Reflexive]

(ii) (X,τ ) ∼= (Y,τ 1) implies (Y,τ 1) ∼= (X,τ ) [Symmetric]

[Observe that if f : (X,τ ) → (Y,τ 1) is a homeomorphism, then its inverse f−1 : (Y,τ 1) →
(X,τ ) is also a homeomorphism.]

(iii) (X,τ ) ∼= (Y,τ 1) and (Y,τ 1) ∼= (Z,τ 2) implies (X,τ ) ∼= (Z,τ 2). [Transitive].

�

The next three examples show that all open intervals in R are homeomorphic. Length is

certainly not a topological property. In particular, an open interval of finite length, such as

(0, 1), is homeomorphic to one of infinite length, such as (−∞, 1). Indeed all open intervals are

homeomorphic to R.
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4.2.4 Example. Prove that any two non-empty open intervals (a, b) and (c, d) are homeomorphic.

Outline Proof.

By Remark 4.2.3 it suffices to show that (a, b) is homeomorphic to (0, 1) and (c, d) is

homeomorphic to (0, 1). But as a and b are arbitrary (except that a < b), if (a, b) is

homeomorphic to (0, 1) then (c, d) is also homeomorphic to (0, 1). To prove that (a, b)

is homeomorphic to (0, 1) it suffices to find a homeomorphism f : (0, 1) → (a, b).

Let a, b,∈ R with a < b and consider the function f : (0, 1) → (a, b) given by

f(x) = a(1− x) + bx.
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Clearly f : (0, 1) → (a, b) is one-to-one and onto. It is also clear from the diagram that the image

under f of any open interval in (0, 1) is an open interval in (a, b); that is,

f(open interval in (0, 1)) = an open interval in (a, b).

But every open set in (0, 1) is a union of open intervals in (0, 1) and so

f(open set in (0, 1)) = f(union of open intervals in (0, 1))

= union of open intervals in (a, b)

= open set in (a, b).

So condition (iv) of Definition 4.2.1 is satisfied. Similarly, we see that f−1 (open set in (a, b)) is

an open set in (0, 1). So condition (iii) of Definition 4.2.1 is also satisfied.

[Exercise: write out the above proof carefully.]

Hence f is a homeomorphism and (0, 1) ∼= (a, b), for all a, b ∈ R with a < b.

From the above it immediately follows that (a, b) ∼= (c, d), as required. �
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4.2.5 Example. Prove that the space R is homeomorphic to the open interval (−1, 1) with

the usual topology.

Outline Proof. Define f : (−1, 1) → R by

f(x) =
x

1− | x | .

It is readily verified that f is one-to-one and onto, and a diagrammatic argument like that in

Example 4.2.2 indicates that f is a homeomorphism.
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[Exercise: write out a proof that f is a homeomorphism.] �

4.2.6 Example. Prove that every open interval (a, b), with a < b, is homeomorphic to R.

Proof. This follows immediately from Examples 4.2.5 and 4.2.4 and Remark 4.2.3. �

4.2.7 Remark. It can be proved in a similar fashion that any two intervals [a, b] and [c, d],

with a < b and c < d, are homeomorphic. �
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Exercises 4.2

1. (i) If a, b, c, and d are real numbers with a < b and c < d, prove that [a, b] ∼= [c, d].

(ii) If a and b are any real numbers, prove that

(−∞, a] ∼= (−∞, b] ∼= [a,∞) ∼= [b,∞).

(iii) If c, d, e, and f are any real numbers with c < d and e < f , prove that

[c, d) ∼= [e, f) ∼= (c, d] ∼= (e, f ].

(iv) Deduce that for any real numbers a and b with a < b,

[0, 1) ∼= (−∞, a] ∼= [a,∞) ∼= [a, b) ∼= (a, b].

2. Prove that Z ∼= N

3. Let m and c be non-zero real numbers and X the subspace of R2 given by X = {〈x, y〉 : y =

mx+ c}. Prove that X is homeomorphic to R.

4. (i) Let X1 and X2 be the closed rectangular regions in R2 given by

X1 = {〈x, y〉 : |x| ≤ a1 and |y| ≤ b1}

and X2 = {〈x, y〉 : |x| ≤ a2 and |y| ≤ b2}

where a1, b1, a2, and b2 are positive real numbers. If X1 and X2 are given the induced

topologies from R2, show that X1
∼= X2.

(ii) Let D1 and D2 be the closed discs in R2 given by

D1 = {〈x, y〉 : x2 + y2 ≤ c1}

and D2 = {〈x, y〉 : x2 + y2 ≤ c2}

where c1 and c2 are positive real numbers. Prove that the topological space D1
∼= D2,

where D1 and D2 have their subspace topologies.

(iii) Prove that X1
∼= D1.
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5. Let X1 and X2 be subspaces of R given by X1 = (0, 1) ∪ (3, 4) and X2 = (0, 1) ∪ (1, 2). Is

X1
∼= X2? (Justify your answer.)

6. (Group of Homeomorphisms) Let (X,τ ) be any topological space and G the set of all

homeomorphisms of X into itself.

(i) Show that G is a group under the operation of composition of functions.

(ii) If X = [0, 1], show that G is infinite.

(iii) If X = [0, 1], is G an abelian group?

7. Let (X,τ ) and (Y,τ 1) be homeomorphic topological spaces. Prove that

(i) If (X,τ ) is a T0-space, then (Y,τ 1) is a T0-space.

(ii) If (X,τ ) is a T1-space, then (Y,τ 1) is a T1-space.

(iii) If (X,τ ) is a Hausdorff space, then (Y,τ 1) is a Hausdorff space.

(iv) If (X,τ ) satisfies the second axiom of countability, then (Y,τ 1) satisfies the second

axiom of countability.

(v) If (X,τ ) is a separable space, then (Y,τ 1) is a separable space.

8.* Let (X,τ ) be a discrete topological space. Prove that (X,τ ) is homeomorphic to a subspace

of R if and only if X is countable.

4.3 Non-Homeomorphic Spaces

To prove two topological spaces are homeomorphic we have to find a homeomorphism between

them.

But, to prove that two topological spaces are not homeomorphic is often much harder as we

have to show that no homeomorphism exists. The following example gives us a clue as to how

we might go about showing this.
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4.3.1 Example. Prove that [0, 2] is not homeomorphic to the subspace [0, 1] ∪ [2, 3] of R.

Proof. Let (X,τ ) = [0, 2] and (Y,τ 1) = [0, 1] ∪ [2, 3]. Then

[0, 1] = [0, 1] ∩ Y ⇒ [0, 1] is closed in (Y,τ 1)

and [0, 1] = (−1, 1 1/2) ∩ Y ⇒ [0, 1] is open in (Y,τ 1).

Thus Y is not connected, as it has [0, 1] as a proper non-empty clopen subset.

Suppose that (X,τ ) ∼= (Y,τ 1). Then there exists a homeomorphism f : (X,τ ) → (Y,τ 1).

So f−1([0, 1]) is a clopen subset of X, and hence X is not connected. This is false as [0, 2] = X

is connected. (See Exercises 4.1 #15.) So we have a contradiction and thus (X,τ ) �∼= (Y,τ 1).�

What do we learn from this?

4.3.2 Proposition. Any topological space homeomorphic to a connected space is

connected. �

Proposition 4.3.2 gives us one way to try to show two topological spaces are not homeomorphic

. . . by finding a property “preserved by homeomorphisms� which one space has and the other

does not.
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Amongst the exercises we have met many properties “preserved by homeomorphisms�:

(i) T0-space;

(ii) T1-space;

(iii) T2-space or Hausdorff space;

(iv) regular space;

(v) T3-space;

(vi) satisfying the second axiom of countability;

(vii) separable space. [See Exercises 4.2 #7.]

There are also others:

(viii) discrete space;

(ix) indiscrete space;

(x) finite-closed topology;

(xi) countable-closed topology.

So together with connectedness we know twelve properties preserved by homeomorphisms.

Also two spaces (X,τ ) and (Y,τ 1) cannot be homeomorphic ifX and Y have different cardinalities

or if τ and τ 1 have different cardinalities, e.g. X is countable and Y is uncountable.

Nevertheless when faced with a specific problem we may not have the one we need. For

example, show that (0, 1) is not homeomorphic to [0, 1] or show that R is not homeomorphic to

R2. We shall see how to show that these spaces are not homeomorphic shortly.
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Before moving on to this let us settle the following question: which subspaces of R are

connected?

4.3.3 Definition. A subset S of R is said to be an interval if it has the following property:

if x ∈ S, z ∈ S, and y ∈ R are such that x < y < z, then y ∈ S.

4.3.4 Remarks. Note that each singleton set {x} is an interval.

(ii) Every interval has one of the following forms: {a}, [a, b], (a, b), [a, b), (a, b], (−∞, a), (−∞, a],

(a,∞), [a,∞), (−∞,∞).

(iii) It follows from Example 4.2.6, Remark 4.2.7, and Exercises 4.2 #1, that every interval is

homeomorphic to (0, 1), [0, 1], [0, 1), or {0}. In Exercises 4.3 #1 we are able to make an

even stronger statement.

4.3.5 Proposition. A subspace S of R is connected if and only if it is an interval.

Proof. That all intervals are connected can be proved in a similar fashion to Proposition 3.3.3

by replacing R everywhere in the proof by the interval we are trying to prove connected.

Conversely, let S be connected. Suppose x ∈ S, z ∈ S, x < y < z, and y /∈ S. Then

(−∞, y) ∩ S = (−∞, y] ∩ S is an open and closed subset of S. So S has a clopen subset, namely

(−∞, y)∩S. To show that S is not connected we have to verify only that this clopen set is proper

and non-empty. It is non-empty as it contains x. It is proper as z ∈ S but z /∈ (−∞, y)∩ S. So S

is not connected. This is a contradiction. Therefore S is an interval. �

We now see a reason for the name “connected�. Subspaces of R such as [a, b], (a, b), etc.

are connected, while subspaces like

X = [0, 1] ∪ [2, 3] ∪ [5, 6]

which is a union of “disconnected� pieces, are not connected.

Now let us turn to the problem of showing that (0, 1) �∼= [0, 1]. Firstly, we present a seemingly

trivial observation.
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4.3.6 Remark. Let f : (X,τ ) → (Y,τ 1) be a homeomorphism. Let a ∈ X, so that X \ {a}
is a subspace of X and has induced topology τ 2. Also Y \ {f(a)} is a subspace of Y and has

induced topology τ 3. Then (X \ {a},τ 2) is homeomorphic to (Y \ {f(a)},τ 3).

Outline Proof. Define g : X \ {a} → Y \ {f(a)} by g(x) = f(x), for all x ∈ X \ {a}. Then it is

easily verified that g is a homeomorphism. (Write down a proof of this.) �

As an immediate consequence of this we have:

4.3.7 Corollary. If a, b, c, and d are real numbers with a < b and c < d, then

(i) (a, b) �∼= [c, d),

(ii) (a, b) �∼= [c, d], and

(iii) [a, b) �∼= [c, d].

Proof. Let (X,τ ) = [c, d) and (Y,τ 1) = (a, b). Suppose that (X,τ ) ∼= (Y,τ 1). Then

X \ {c} ∼= Y \ {y}, for some y ∈ Y . But, X \ {c} = (c, d), an interval, and so is connected, while

no matter which point we remove from (a, b) the resultant space is disconnected. Hence

X \ {c} �∼= Y \ {y}, for each y ∈ Y.

This is a contradiction. So [c, d) �∼= (a, b).

(ii) [c, d] \ {c} is connected, while (a, b) \ {y} is disconnected for all y ∈ (a, b). Thus

(a, b) �∼= [c, d].

(iii) Suppose that [a, b) ∼= [c, d]. Then [c, d]\{c} ∼= [a, b)\{y} for some y ∈ [a, b). Therefore

([c, d] \ {c}) \ {d} ∼= ([a, b) \ {y}) \ {z}, for some z ∈ [a, b) \ {y}; that is, (c, d) ∼= [a, b) \ {y, z}, for
some distinct y and z in [a, b). But (c, d) is connected, while [a, b) \ {y, z}, for any two distinct

points y and z in [a, b), is disconnected. So we have a contradiction. Therefore [a, b) �∼= [c, d]. �
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Exercises 4.3

1. Deduce from the above that every interval is homeomorphic to one and only one of the

following spaces:

{0}; (0, 1); [0, 1]; [0, 1).

2. Deduce from Proposition 4.3.5 that every countable subspace of R with more than one

point is disconnected. (In particular, Z and Q are disconnected.)

3. Let X be the unit circle in R2; that is, X = {〈x, y〉 : x2 + y2 = 1} and has the subspace

topology.

(i) Show that X \ {〈1, 0〉} is homeomorphic to the open interval (0, 1).

(ii) Deduce that X �∼= (0, 1) and X �∼= [0, 1].

– (iii)] Observing that for every point a ∈ X, the subspace X \ {a} is connected, show

that X �∼= [0, 1).

(iv) Deduce that X is not homeomorphic to any interval.

4. Let Y be the subspace of R2 given by

Y = {〈x, y〉 : x2 + y2 = 1} ∪ {〈x, y〉 : (x− 2)2 + y2 = 1}

(i) Is Y homeomorphic to the space X in Exercise 3 above?

(ii) Is Y homeomorphic to an interval?

5. Let Z be the subspace of R2 given by

Z = {〈x, y〉 : x2 + y2 = 1} ∪ {〈x, y〉 : (x− 3/2)2 + y2 = 1}.

Show that

(i) Z is not homeomorphic to any interval, and

(ii) Z is not homeomorphic to X or Y , the spaces described in Exercises 3 and 4 above.

6. Prove that the Sorgenfrey line is not homeomorphic to R, R 2, or any subspace of either of

these spaces.
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7. (i) Prove that the topological space in Exercises 1.1 #5 (i) is not homeomorphic to the

space in Exercises 1.1 #9 (ii).

(ii)* In Exercises 1.1 #5, is (X,τ 1) ∼= (X,τ 2)?

(iii)* In Exercises 1.1 # 9, is (X,τ 2) ∼= (X,τ 9)?

8. Let (X,τ ) be a topological space, where X is an infinite set. Prove each of the following

statements (originally proved by John Ginsburg and Bill Sands).

(i)* (X,τ ) has a subspace homeomorphic to (N,τ 1), where either τ 1 is the indiscrete

topology or (N,τ 1) is a T0-space.

(ii)** Let (X,τ ) be a T1-space. Then (X,τ ) has a subspace homeomorphic to (N,τ 2), where

τ 2 is either the finite-closed topology or the discrete topology.

(iii) Deduce from (ii), that any infinite Hausdorff space contains an infinite discrete subspace

and hence a subspace homeomorphic to N with the discrete topology.

(iv)** Let (X,τ ) be a T0-space which is not a T1-space. Then the space (X,τ ) has a

subspace homeomorphic to (N,τ 1), where τ 3 consists of N, Ø,and all of the sets

{1, 2, . . . , n}, n ∈ N or τ 3 consists of N, Ø, and all of the sets {n, n+ 1, . . . }, n ∈ N.

(v) Deduce from the above that every infinite topological space has a subspace homeomorphic

to (N,τ 4) where τ 4 is the indiscrete topology, the discrete topology, the finite-closed

topology, or one of the two topologies described in (iv), known as the initial segment

topology and the final segment topology, respectively. Further, no two of these five

topologies on N are homeomorphic.
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9. Let (X,τ ) and (Y,τ 1) be topological spaces. A map f : X → Y is said to be a local

homeomorphism if each point x ∈ X has an open neighbourhood U such that f maps U

homeomorphically onto an open subspace V of (Y,τ 1); that is, if the topology induced on U

by τ is τ 2 and the topology induced on V = f(U) by τ 1 is τ 3, then f is a homeomorphism

of (U,τ 2) onto (V,τ 3). The topological space (X,τ ) is said to be locally homeomorphic

to (Y,τ 1) if there exists a local homeomorphism of (X,τ ) into (Y,τ 1).

(i) If (X,τ ) and (Y,τ 1) are homeomorphic topological spaces, verify that (X,τ ) is locally

homeomorphic to (Y,τ 1).

(ii) If (X,τ ) is an open subspace of (Y,τ 1), prove that (X,τ ) is locally homeomorphic to

(Y,τ 1).

(iii)* Prove that if f : (X,τ ) → (Y,τ 1) is a local homeomorphism, then f maps every open

subset of (X,τ ) onto an open subset of (Y,τ 1).
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4.4 Postscript

There are three important ways of creating new topological spaces from old ones: forming

subspaces, products, and quotient spaces. We examine all three in due course. Forming subspaces

was studied in this section. This allowed us to introduce the important spaces Q, [a, b], (a, b), etc.

We defined the central notion of homeomorphism. We noted that “∼=� is an equivalence

relation. A property is said to be topological if it is preserved by homeomorphisms; that is,

if (X, T ) ∼= (Y,τ 1) and (X,τ ) has the property then (Y, T1) must also have the property.

Connectedness was shown to be a topological property. So any space homeomorphic to a

connected space is connected. (A number of other topological properties were also identified.)

We formally defined the notion of an interval in R, and showed that the intervals are precisely

the connected subspaces of R.

Given two topological spaces (X,τ ) and (Y,τ 1) it is an interesting task to show whether

they are homeomorphic or not. We proved that every interval in R is homeomorphic to one and

only one of [0, 1], (0, 1), [0, 1), and {0}. In the next section we show that R is not homeomorphic

to R2. A tougher problem is to show that R2 is not homeomorphic to R3. This will be done later

via the Jordan curve theorem. Still the crème de la crème is the fact that Rn ∼= Rm if and only if

n = m. This is best approached via algebraic topology, which is only touched upon in this book.

Exercises 4.2 #6 introduced the notion of group of homeomorphisms, which is an interesting

and important topic in its own right.



Chapter 5

Continuous Mappings

Introduction

In most branches of pure mathematics we study what in category theory are called “objects� and

“arrows�. In linear algebra the objects are vector spaces and the arrows are linear transformations.

In group theory the objects are groups and the arrows are homomorphisms, while in set theory

the objects are sets and the arrows are functions. In topology the objects are the topological

spaces. We now introduce the arrows . . . the continuous mappings.

5.1 Continuous Mappings

Of course we are already familiar1 with the notion of a continuous function from R into R.

A function f : R → R is said to be continuous if for each a ∈ R and each positive real

number ε, there exists a positive real number δ such that | x− a |< δ implies | f(x)− f(a) |< ε.

It is not at all obvious how to generalize this definition to general topological spaces where we

do not have “absolute value� or “subtraction�. So we shall seek another (equivalent) definition

of continuity which lends itself more to generalization.

It is easily seen that f : R → R is continuous if and only if for each a ∈ R and each interval

(f(a) − ε, f(a) + ε), for ε > 0, there exists a δ > 0 such that f(x) ∈ (f(a) − ε , f(a) + ε) for all

x ∈ (a− δ , a+ δ).

This definition is an improvement since it does not involve the concept “absolute value� but

it still involves “subtraction�. The next lemma shows how to avoid subtraction.
1The early part of this section assumes that you have some knowledge of real analysis and, in particular, the ε–δ

definition of continuity. If this is not the case, then proceed directly to Definition 5.1.3.

84
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5.1.1 Lemma. Let f be a function mapping R into itself. Then f is continuous if and

only if for each a ∈ R and each open set U containing f(a), there exists an open set V

containing a such that f(V ) ⊆ U .

Proof. Assume that f is continuous. Let a ∈ R and let U be any open set containing f(a).

Then there exist real numbers c and d such that f(a) ∈ (c, d) ⊆ U . Put ε equal to the smaller of

the two numbers d− f(a) and f(a)− c, so that

(f(a)− ε , f(a) + ε) ⊆ U.

As the mapping f is continuous there exists a δ > 0 such that f(x) ∈ (f(a)− ε , f(a) + ε) for all

x ∈ (a− δ , a+ δ). Let V be the open set (a− δ , a+ δ). Then a ∈ V and f(V ) ⊆ U , as required.

Conversely assume that for each a ∈ R and each open set U containing f(a) there exists an

open set V containing a such that f(V ) ⊆ U . We have to show that f is continuous. Let a ∈ R

and ε be any positive real number. Put U = (f(a)− ε , f(a) + ε). So U is an open set containing

f(a). Therefore there exists an open set V containing a such that f(V ) ⊆ U . As V is an open set

containing a, there exist real numbers c and d such that a ∈ (c, d) ⊆ V . Put δ equal to the smaller

of the two numbers d− a and a− c, so that (a− δ , a + δ) ⊆ V . Then for all x ∈ (a− δ , a + δ),

f(x) ∈ f(V ) ⊆ U , as required. So f is continuous. �

We could use the property described in Lemma 5.1.1 to define continuity, however the

following lemma allows us to make a more elegant definition.
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5.1.2 Lemma. Let f be a mapping of a topological space (X,τ ) into a topological space

(Y,τ ′). Then the following two conditions are equivalent:

(i) for each U ∈ τ ′, f−1(U) ∈ τ ,

(ii) for each a ∈ X and each U ∈ τ ′ with f(a) ∈ U , there exists a V ∈ τ such that a ∈ V

and f(V ) ⊆ U .

Proof. Assume that condition (i) is satisfied. Let a ∈ X and U ∈ τ ′ with f(a) ∈ U . Then

f−1(U) ∈ τ . Put V = f−1(U), and we have that a ∈ V, V ∈ τ , and f(V ) ⊆ U . So condition (ii)

is satisfied.

Conversely, assume that condition (ii) is satisfied. Let U ∈ τ ′. If f−1(U) = Ø then clearly

f−1(U) ∈ τ . If f−1(U) �= Ø, let a ∈ f−1(U). Then f(a) ∈ U . Therefore there exists a V ∈ τ such

that a ∈ V and f(V ) ⊆ U . So for each a ∈ f−1(U) there exists a V ∈ τ such that a ∈ V ⊆ f−1(U).

By Corollary 3.2.9 this implies that f−1(U) ∈ τ . So condition (i) is satisfied. �

So putting together Lemmas 5.1.1 and 5.1.2 we see that f : R → R is continuous if and only

if for each open subset U of R, f−1(U) is an open set.

This leads us to define the notion of a continuous function between two topological spaces

as follows:

5.1.3 Definition. Let (X,τ ) and (Y,τ 1) be topological spaces and f a function from X

into Y . Then f : (X,τ ) → (Y,τ 1) is said to be a continuous mapping if for each U ∈ τ 1,

f−1(U) ∈ τ .

From the above remarks we see that this definition of continuity coincides with the usual

definition when (X,τ ) = (Y,τ 1) = R.
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Let us go through a few easy examples to see how nice this definition of continuity is to

apply in practice.

5.1.4 Example. Consider f : R → R given by f(x) = x, for all x ∈ R; that is, f is the identity

function. Then for any open set U in R, f−1(U) = U and so is open. Hence f is continuous. �

5.1.5 Example. Let f : R → R be given by f(x) = c, for c a constant, and all x ∈ R. Then

let U be any open set in R. Clearly f−1(U) = R if c ∈ U and Ø if c �∈ U . In both cases, f−1(U) is

open. So f is continuous. �

5.1.6 Example. Consider f : R → R defined by

f(x) =

{
x− 1, if x ≤ 3
1
2
(x+ 5), if x > 3.
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Recall that a mapping is continuous if and only if the inverse image of every open set

is an open set.

Therefore, to show f is not continuous we have to find only one set U such that

f−1(U) is not open.

Then f−1((1, 3)) = (2, 3], which is not an open set. Therefore f is not continuous. �
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Note that Lemma 5.1.2 can now be restated in the following way.2

5.1.7 Proposition. Let f be a mapping of a topological space (X,τ ) into a space (Y,τ ′).

Then f is continuous if and only if for each x ∈ X and each U ∈ τ ′ with f(x) ∈ U , there

exists a V ∈ τ such that x ∈ V and f(V ) ⊆ U . �

5.1.8 Proposition. Let (X,τ ), (Y,τ 1) and (Z,τ 2) be topological spaces. If f : (X,τ ) →
(Y,τ 1) and g : (Y, T1) → (Z,τ 2) are continuous mappings, then the composite function

g ◦ f : (X,τ ) → (Z,τ 2) is continuous.

Proof.

To prove that the composite function g ◦ f : (X, τ ) → (Z, τ 2) is continuous, we have to

show that if U ∈ τ 2, then (g ◦ f)−1(U) ∈ τ .

But (g ◦ f)−1(U) = f−1(g−1(U)).

Let U be open in (Z,τ 2). Since g is continuous, g−1(U) is open in τ 1. Then f−1(g−1(U)) is

open in τ as f is continuous. But f−1(g−1(U)) = (g ◦ f)−1(U). Thus g ◦ f is continuous. �

The next result shows that continuity can be described in terms of closed sets instead of

open sets if we wish.

5.1.9 Proposition. Let (X,τ ) and (Y,τ 1) be topological spaces. Then f : (X,τ ) →
(Y,τ 1) is continuous if and only if for every closed subset S of Y, f−1(S) is a closed subset

of X.

Proof. This results follows immediately once you recognize that

f−1(complement of S) = complement of f−1(S). �
2If you have not read Lemma 5.1.2 and its proof you should do so now.
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5.1.10 Remark. There is a relationship between continuous maps and homeomorphisms: if

f : (X,τ ) → (Y,τ 1) is a homeomorphism then it is a continuous map. Of course not every

continuous map is a homeomorphism.

However the following proposition, whose proof follows from the definitions of “continuous�

and “homeomorphism� tells the full story.

5.1.11 Proposition. Let (X,τ ) and (Y,τ ′) be topological spaces and f a function from

X into Y . Then f is a homeomorphism if and only if

(i) f is continuous,

(ii) f is one-to-one and onto; that is, the inverse function f−1 : Y → X exists, and

(iii) f−1 is continuous. �

A useful result is the following proposition which tells us that the restriction of a continuous

map is a continuous map. Its routine proof is left to the reader – see also Exercise Set 5.1 #8.

5.1.12 Proposition. Let (X,τ ) and (Y,τ 1) be topological spaces, f : (X,τ ) → (Y,τ 1)

a continuous mapping, A a subset of X, and τ 2 the induced topology on A. Further let

g : (A,τ 2) → (Y,τ 1) be the restriction of f to A; that is, g(x) = f(x), for all x ∈ A. Then g

is continuous.
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Exercises 5.1

1. (i) Let f : (X,τ ) → (Y,τ 1) be a constant function. Show that f is continuous.

(ii) Let f : (X,τ ) → (X,τ ) be the identity function. Show that f is continuous.

2. Let f : R → R be given by

f(x) =

{
−1, x ≤ 0

1, x > 0.

(i) Prove that f is not continuous using the method of Example 5.1.6.

(ii) Find f−1{1} and, using Proposition 5.1.9, deduce that f is not continuous.

3. Let f : R → R be given by

f(x) =

{
x, x ≤ 1

x+ 2, x > 1.

Is f continuous? (Justify your answer.)

4. Let (X,τ ) be the subspace of R given by X = [0, 1] ∪ [2, 4]. Define f : (X,τ ) → R by

f(x) =

{
1, if x ∈ [0, 1]

2, if x ∈ [2, 4].

Prove that f is continuous. (Does this surprise you?)

5. Let (X,τ ) and (Y,τ 1) be topological spaces and B1 a basis for the topology τ 1. Show that

a map f : (X,τ ) → (Y,τ 1) is continuous if and only if f−1(U) ∈ τ , for every U ∈ B1.

6. Let (X,τ ) and (Y,τ 1) be topological spaces and f a mapping of X into Y . If (X,τ ) is a

discrete space, prove that f is continuous.

7. Let (X,τ ) and (Y,τ 1) be topological spaces and f a mapping of X into Y . If (Y,τ 1) is an

indiscrete space, prove that f is continuous.

8. Let (X,τ ) and (Y,τ 1) be topological spaces and f : (X,τ ) → (Y,τ 1) a continuous mapping.

Let A be a subset of X, τ 2 the induced topology on A, B = f(A), τ 3 the induced topology

on B and g : (A,τ 2) → (B, T3) the restriction of f to A. Prove that g is continuous.
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9. Let f be a mapping of a space (X,τ ) into a space (Y,τ ′). Prove that f is continuous if

and only if for each x ∈ X and each neighbourhood N of f(x) there exists a neighbourhood

M of x such that f(M) ⊆ N .

10. Let τ 1 and τ 2 be two topologies on a set X. Then τ 1 is said to be a finer topology than

T2 (and τ 2 is said to be a coarser topology than T1) if τ 1 ⊇ τ 2. Prove that

(i) the Euclidean topology R is finer than the finite-closed topology on R;

(ii) the identity function f : (X,τ 1) → (X,τ 2) is continuous if and only if τ 1 is a finer

topology than τ 2.

11. Let f : R → R be a continuous function such that f(q) = 0 for every rational number q.

Prove that f(x) = 0 for every x ∈ R.

12. Let (X,τ ) and (Y,τ 1) be topological spaces and f : (X,τ ) → (Y,τ 1) a continuous map. If

f is one-to-one, prove that

(i) (Y,τ 1) Hausdorff implies (X,τ ) Hausdorff.

(ii) (Y,τ 1) a T1-space implies (X,τ ) is a T1-space.

13. Let (X,τ ) and (Y,τ 1) be topological spaces and let f be a mapping of (X,τ ) into (Y,τ 1).

Prove that f is continuous if and only if for every subset A of X, f(A) ⊆ f(A).

[Hint: Use Proposition 5.1.9.]

5.2 Intermediate Value Theorem

5.2.1 Proposition. Let (X,τ ) and (Y,τ 1) be topological spaces and f : (X,τ ) → (Y,τ 1)

surjective and continuous. If (X,τ ) is connected, then (Y,τ 1) is connected.

Proof. Suppose (Y,τ 1) is not connected. Then it has a clopen subset U such that U �= Ø and

U �= Y . Then f−1(U) is an open set, since f is continuous, and also a closed set, by Proposition

5.1.9; that is, f−1(U) is a clopen subset of X. Now f−1(U) �= Ø as f is surjective and U �= Ø.

Also f−1(U) �= X, since if it were U would equal Y , by the surjectivity of f . Thus (X,τ ) is not

connected. This is a contradiction. Therefore (Y,τ 1) is connected. �
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5.2.2 Remarks. (i) The above proposition would be false if the condition “surjective� were

dropped. (Find an example of this.)

(ii) Simply put, Proposition 5.2.1 says: any continuous image of a connected set is connected.

(iii) Proposition 5.2.1 tells us that if (X,τ ) is a connected space and (Y,τ ′) is not connected

(i.e. disconnected) then there exists no mapping of (X,τ ) onto (Y,τ ′) which is continuous.

For example, while there are an infinite number of mappings of R onto Q (or onto Z),

none of them are continuous. Indeed in Exercise Set 5.2 # 10 we observe that the only

continuous mappings of R into Q (or into Z) are the constant mappings. �

The following strengthened version of the notion of connectedness is often useful.

5.2.3 Definition. A topological space (X,τ ) is said to be path-connected (or pathwise

connected if for each pair of distinct points a and b of X there exists a continuous mapping

f : [0, 1] → (X,τ ), such that f(0) = a and f(1) = b. The mapping f is said to be a path

joining a to b.

5.2.4 Example. It is readily seen that every interval is path-connected. �

5.2.5 Example. For each n ≥ 1, Rn is path-connected. �

5.2.6 Proposition. Every path-connected space is connected.

Proof. Let (X,τ ) be a path-connected space and suppose that it is not connected.

Then it has a proper non-empty clopen subset U . So there exist a and b such that a ∈ U

and b ∈ X \U . As (X,τ ) is path-connected there exists a continuous function f : [0, 1] → (X,τ )

such that f(0) = a and f(1) = b.

However, f−1(U) is a clopen subset of [0, 1]. As a ∈ U, 0 ∈ f−1(U) and so f−1(U) �= Ø. As

b �∈ U, 1 �∈ f−1(U) and thus f−1(U) �= [0, 1]. Hence f−1(U) is a proper non-empty clopen subset

of [0, 1], which contradicts the connectedness of [0, 1].

Consequently (X,τ ) is connected. �
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5.2.7 Remark. The converse of Proposition 5.2.6 is false; that is, not every connected space

is path-connected. An example of such a space is the following subspace of R2:

X = {〈x, y〉 : y = sin(1/x), 0 < x ≤ 1} ∪ {〈0, y〉 : −1 ≤ y ≤ 1}.

[Exercise Set 5.2 #6 shows that X is connected. That X is not path-connected can be seen by

showing that there is no path joining 〈0, 0〉 to, say, the point 〈1/π, 0〉. Draw a picture and try to

convince yourself of this.] �

We can now show that R �∼= R2.

5.2.8 Example. Clearly R2 \ {〈0, 0〉} is path-connected and hence, by Proposition 5.2.6, is

connected. However R \ {a}, for any a ∈ R, is disconnected. Hence R �∼= R2. �

We now present the Weierstrass Intermediate Value Theorem which is a beautiful application

of topology to the theory of functions of a real variable. The topological concept crucial to the

result is that of connectedness.

5.2.9 Theorem. (Weierstrass Intermediate Value Theorem) Let f : [a, b] → R be

continuous and let f(a) �= f(b). Then for every number p between f(a) and f(b) there is a

point c ∈ [a, b] such that f(c) = p.

Proof. As [a, b] is connected and f is continuous, Proposition 5.2.1 says that f([a, b]) is

connected. By Proposition 4.3.5 this implies that f([a, b]) is an interval. Now f(a) and f(b) are

in f([a, b]). So if p is between f(a) and f(b), p ∈ f([a, b]), that is, p = f(c), for some c ∈ [a, b]. �

5.2.10 Corollary. If f : [a, b] → R is continuous and such that f(a) > 0 and f(b) < 0,

then there exists an x ∈ [a, b] such that f(x) = 0. �
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5.2.11 Corollary. (Fixed Point Theorem) Let f be a continuous mapping of [0, 1] into

[0, 1]. Then there exists a z ∈ [0, 1] such that f(z) = z. (The point z is called a fixed point.)

Proof. If f(0) = 0 or f(1) = 1, the result is obviously true. Thus it suffices to consider the

case when f(0) > 0 and f(1) < 1.

Let g : [0, 1] → R be defined by g(x) = x − f(x). Then g is continuous, g(0) = −f(0) < 0,

and g(1) = 1 − f(1) > 0. Consequently, by Corollary 5.2.10, there exists a z ∈ [0, 1] such that

g(z) = 0; that is, z − f(z) = 0 or f(z) = z. �

5.2.12 Remark. Corollary 5.2.11 is a special case of a very important theorem called the

Brouwer Fixed Point Theorem which says that if you map an n-dimensional cube continuously

into itself then there is a fixed point. [There are many proofs of this theorem, but most depend

on methods of algebraic topology. An unsophisticated proof is given on pp. 238–239 of the book

“Introduction to Set Theory and Topology�, by K. Kuratowski (Pergamon Press, 1961).]

Exercises 5.2

1. Prove that a continuous image of a path-connected space is path-connected.

2. Let f be a continuous mapping of the interval [a, b] into itself, where a and b ∈ R and a < b.

Prove that there is a fixed point.

3. (i) Give an example which shows that Corollary 5.2.11 would be false if we replaced [0, 1]

everywhere by (0, 1).

(ii) A topological space (X,τ ) is said to have the fixed point property if every continuous

mapping of (X,τ ) into itself has a fixed point. Show that the only intervals having the

fixed point property are the closed intervals.

(iii) Let X be a set with at least two points. Prove that the discrete space (X,τ ) and the

indiscrete space (X,τ ′) do not have the fixed-point property.

(iv) Does a space which has the finite-closed topology have the fixed-point property?

(v) Prove that if the space (X,τ ) has the fixed-point property and (Y,τ 1) is a space

homeomorphic to (X,τ ), then (Y,τ 1) has the fixed-point property.
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4. Let {Aj : j ∈ J} be a family of connected subspaces of a topological space (X,τ ). If⋂
j∈J

Aj �= Ø, show that
⋃
j∈J

Aj is connected.

5. Let A be a connected subspace of a topological space (X,τ ). Prove that A is also connected.

Indeed, show that if A ⊆ B ⊆ A, then B is connected.

6. (i) Show that the subspace Y = {〈x, y〉 : y = sin (1/x) , 0 < x ≤ 1} of R2 is connected.

[Hint: Use Proposition 5.2.1.]

(ii) Verify that Y = Y ∪ {〈0, y〉 : −1 ≤ y ≤ 1}

(iii) Using Exercise 5, observe that Y is connected.

7. Let E be the set of all points in R2 having both coordinates rational. Prove that the space

R2 \ E is path-connected.

8.* Let C be any countable subset of R2. Prove that the space R2 \ C is path-connected.

9. Let (X,τ ) be a topological space and a any point in X. The component in X of a, CX(a),

is defined to be the union of all connected subsets of X which contain a. Show that

(i) CX(a) is connected. (Use Exercise 4 above.)

(ii) CX(a) is the largest connected set containing a.

(iii) CX(a) is closed in X. (Use Exercise 5 above.)

10. A topological space (X,τ ) is said to be totally disconnected if every non-empty connected

subset is a singleton set. Prove the following statements.

(i) (X,τ ) is totally disconnected if and only if for each a ∈ X, CX(a) = {a}. (See the

notation in Exercise 9.)

(ii) The set Q of all rational numbers with the usual topology is totally disconnected.

(iii) If f is a continuous mapping of R into Q, prove that there exists a c ∈ Q such that

f(x) = c, for all x ∈ R.

(iv) Every subspace of a totally disconnected space is totally disconnected.

(v) Every countable subspace of R2 is totally disconnected.

(vi) The Sorgenfrey line is totally disconnected.
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11. (i) Using Exercise 9, define, in the natural way, the “path-component� of a point in a

topological space.

(ii) Prove that, in any topological space, every path-component is a path-connected space.

(iii) If (X,τ ) is a topological space with the property that every point in X has a

neighbourhood which is path-connected, prove that every path-component is an open

set. Deduce that every path-component is also a closed set.

(iv) Using (iii), show that an open subset of R2 is connected if and only if it is path-

connected.

12.* Let A and B be subsets of a topological space (X,τ ). If A and B are both open or both

closed, and A ∪B and A ∩B are both connected, show that A and B are connected.

13. A topological space (X,τ ) is said to be zero-dimensional if there is a basis for the topology

consisting of clopen sets. Prove the following statements.

(i) Q and P are zero-dimensional spaces.

(ii) A subspace of a zero-dimensional space is zero-dimensional.

(iii) A zero-dimensional Hausdorff space is totally disconnected. (See Exercise 10 above.)

(iv) Every indiscrete space is zero-dimensional.

(v) Every discrete space is zero-dimensional.

(vi) Indiscrete spaces with more than one point are not totally disconnected.

(vii) A zero-dimensional T0-space is Hausdorff.

(viii)* A subspace of R is zero-dimensional if and only if it is totally disconnectd.

14. Show that every local homeomorphism is a continuous mapping. (See Exercises 4.3#9.)
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5.3 Postscript

In this chapter we said that a mapping3 between topological spaces is called “continuous� if it

has the property that the inverse image of every open set is an open set. This is an elegant

definition and easy to understand. It contrasts with the one we meet in real analysis which was

mentioned at the beginning of this section. We have generalized the real analysis definition, not

for the sake of generalization, but rather to see what is really going on.

The Weierstrass Intermediate Value Theorem seems intuitively obvious, but we now see it

follows from the fact that R is connected and that any continuous image of a connected space is

connected.

We introduced a stronger property than connected, namely path-connected. In many cases

it is not sufficient to insist that a space be connected, it must be path-connected. This property

plays an important role in algebraic topology.

We shall return to the Brouwer Fixed Point Theorem in due course. It is a powerful theorem.

Fixed point theorems play important roles in various branches of mathematics including topology,

functional analysis, and differential equations. They are still a topic of research activity today.

In Exercises 5.2 #9 and #10 we met the notions of “component� and “totally disconnected�.

Both of these are important for an understanding of connectedness.

3Warning: Some books use the terms “mapping� and “map� to mean continuous mapping. We do not.



Chapter 6

Metric Spaces

Introduction

The most important class of topological spaces is the class of metric spaces. Metric spaces

provide a rich source of examples in topology. But more than this, most of the applications of

topology to analysis are via metric spaces.

6.1 Metric Spaces

6.1.1 Definition. Let X be a non-empty set and d a real-valued function defined on

X ×X such that for a, b ∈ X:

(i) d(a, b) ≥ 0 and d(a, b) = 0 if and only if a = b,

(ii) d(a, b) = d(b, a) and

(iii) d(a, c) ≤ d(a, b) + d(b, c), [the triangle inequality] for all a, b and c in X.

Then d is said to be a metric on X, (X, d) is called a metric space and d(a, b) is referred to

as the distance between a and b.

98
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6.1.2 Example. The function d : R × R → R given by

d(a, b) = |a− b|, a, b ∈ R

is a metric on the set R since

(i) |a− b| ≥ 0, for all a and b in R, and |a− b| = 0 if and only if a = b,

(ii) |a− b| = |b− a|, and

(iii) |a− c| ≤ |a− b|+ |b− c|. (Deduce this from |x+ y| ≤ |x|+ |y|.)

We call d the euclidean metric on R. �

6.1.3 Example. The function d : R2 × R2 → R given by

d(〈a1, a2〉, 〈b1, b2〉) =
√

(a1 − b1)2 + (a2 − b2)2

is a metric on R2 called the euclidean metric on R2.
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6.1.4 Example. Let X be a non-empty set and d the function from X ×X into R defined by

d(a, b) =

{
0, if a = b

1, if a �= b.

Then d is a metric on X and is called the discrete metric. �
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Many important examples of metric spaces are “function spaces". For these the set X on

which we put a metric is a set of functions.

6.1.5 Example. Let C[0, 1] denote the set of continuous functions from [0, 1] into R. A metric

is defined on this set by

d(f, g) =

∫ 1

0

|f(x)− g(x)| dx

where f and g are in C[0, 1].

A moment’s thought should tell you that d(f, g) is precisely the area of the region which lies

between the graphs of the functions and the lines x = 0 and x = 1, as illustrated below.

�
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6.1.6 Example. Again let C[0, 1] be the set of all continuous functions from [0, 1] into R.

Another metric is defined on C[0, 1] as follows:

d∗(f, g) = sup{|f(x)− g(x)| : x ∈ [0, 1]}.

Clearly d∗(f, g) is just the largest vertical gap between the graphs of the functions f and g.

�

6.1.7 Example. We can define another metric on R2 by putting

d∗(〈a1, a2〉, 〈b1, b2〉) = max{|a1 − b1|, |a2 − b2|}

where max{x, y} equals the larger of the two numbers x and y. �

6.1.8 Example. Yet another metric on R2 is given by

d1(〈a1, a2〉, 〈b1, b2〉) = |a1 − b1|+ |a2 − b2|. �
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A rich source of examples of metric spaces is the family of normed vector spaces.

6.1.9 Example. Let V be a vector space over the field of real or complex numbers. A norm

‖ ‖ on V is a map : V → R such that for all a, b ∈ V and λ in the field

(i) ‖ a ‖≥ 0 and ‖ a ‖= 0 if and only if a = 0,

(ii) ‖ a+ b ‖≤‖ a ‖ + ‖ b ‖ and

(iii) ‖ λa ‖= |λ| ‖ a ‖.

A normed vector space (V, ‖ ‖) is a vector space V with a norm ‖ ‖.

Let (V, ‖ ‖) be any normed vector space. Then there is a corresponding metric on the set V

given by d(a, b) =‖ a− b ‖, for a and b in V .

It is easily checked that d is indeed a metric. So every normed vector space is also a metric

space in a natural way.

For example, R3 is a normed vector space if we put

‖ 〈x1, x2, x3〉 ‖=
√
x2
1 + x2

2 + x2
3 , for x1, x2, and x3 in R.

So R3 becomes a metric space if we put

d(〈a1, b1, c1〉, 〈a2, b2, c2〉) = ‖ (a1 − a2, b1 − b2, c1 − c2) ‖

=
√

(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2 .

Indeed Rn, for any positive integer n, is a normed vector space if we put

‖ 〈x1, x2, . . . , xn〉 ‖=
√
x2
1 + x2

2 + · · ·+ x2
n .

So Rn becomes a metric space if we put

d(〈a1, a2, . . . , an〉, 〈b1, b2, . . . , bn〉) = ‖ 〈a1 − b1, a2 − b2, . . . , an − bn〉 ‖

=
√
(a1 − b1)2 + (a2 − b2)2 + · · ·+ (an − bn)2 . �
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In a normed vector space (N, ‖ ‖) the open ball with centre a and radius r is defined to be

the set

Br(a) = {x : x ∈ V and ‖ x− a ‖< r}.

This suggests the following definition for metric spaces:

6.1.10 Definition. Let (X, d) be a metric space and r any positive real number. Then

the open ball about a ∈ X of radius r is the set Br(a) = {x : x ∈ X and d(a, x) < r}.

6.1.11 Example. In R with the euclidean metric Br(a) is the open interval (a− r, a+ r). �

6.1.12 Example. In R2 with the euclidean metric, Br(a) is the open disc with centre a and

radius r.

�
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6.1.13 Example. In R2 with the metric d∗ given by

d∗(〈a1, a2〉, 〈b1, b2〉 = max{|a1 − b1|, |a2 − b2|},

the open ball B1(〈0, 0〉) looks like

�

6.1.14 Example. In R2 with the metric d1 given by

d1(〈a1, a2〉, 〈b1, b2〉) = |a1 − b1|+ |a2 − b2|,

the open ball B1(〈0, 0〉) looks like

�
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The proof of the following Lemma is quite easy (especially if you draw a diagram) and so is

left for you to supply.

6.1.15 Lemma. Let (X, d) be a metric space and a and b points of X. Further, let δ1

and δ2 be positive real numbers. If c ∈ Bδ1(a) ∩ Bδ2(b), then there exists a δ > 0 such that

Bδ(c) ⊆ Bδ1(a) ∩Bδ2(b). �

The next Corollary follows in a now routine way from Lemma 6.1.15.

6.1.16 Corollary. Let (X, d) be a metric space and B1 and B2 open balls in (X, d). Then

B1 ∩B2 is a union of open balls in (X, d). �

Finally we are able to link metric spaces with topological spaces.

6.1.17 Proposition. Let (X, d) be a metric space. Then the collection of open balls in

(X, d) is a basis for a topology τ on X.

[The topology τ is referred to as the topology induced by the metric d, and (X,τ ) is called the

induced topological space or the corresponding topological space or the associated topological

space.]

Proof. This follows from Proposition 2.2.8 and Corollary 6.1.16. �

6.1.18 Example. If d is the euclidean metric on R then a basis for the topology τ induced

by the metric d is the set of all open balls. But Bδ(a) = (a − δ , a + δ). From this it is readily

seen that τ is the euclidean topology on R. So the euclidean metric on R induces the euclidean

topology on R. �



106 CHAPTER 6. METRIC SPACES

6.1.19 Example. From Exercises 2.3 #1 (ii) and Example 6.1.12, it follows that the euclidean

metric on the set R2 induces the euclidean topology on R2. �

6.1.20 Example. From Exercises 2.3 #1 (i) and Example 6.1.13 it follows that the metric d∗

also induces the euclidean topology on the set R2. �

It is left as an exercise for you to prove that the metric d1 of Example 6.1.14 also induces

the euclidean topology on R2.

6.1.21 Example. If d is the discrete metric on a set X then for each x ∈ X,B 1
2
(x) = {x}.

So all the singleton sets are open in the topology τ induced on X by d. Consequently, τ is the

discrete topology. �

We saw in Examples 6.1.19, 6.1.20, and 6.1.14 three different metrics on the same set which

induce the same topology.

6.1.22 Definition. Two metrics on a set X are called equivalent if they induce the same

topology on X.

So the metrics d, d∗, and d1, of Examples 6.1.3, 6.1.13, and 6.1.14 on R2 are equivalent.

6.1.23 Proposition. Let (X, d) be a metric space and τ the topology induced on X by

the metric d. Then a subset U of X is open in (X,τ ) if and only if for each a ∈ U there

exists an ε > 0 such that the open ball Bε(a) ⊆ U .

Proof. Assume that U ∈ τ . Then, by Propositions 2.3.2 and 6.1.17, for any a ∈ U there exists

a point b ∈ X and a δ > 0 such that

a ∈ Bδ(b) ⊆ U.

Let ε = δ − d(a, b). Then it is readily seen that

a ∈ Bε(a) ⊆ U.

Conversely, assume that U is a subset of X with the property that for each a ∈ U there exists an

εa > 0 such that Bεa(a) ⊆ U . Then, by Proposition 2.3.3, U is an open set. �
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We have seen that every metric on a set X induces a topology τ on the set X. However,

we shall now show that not every topology on a set is induced by a metric. First, a definition

which you have already met in the exercises. (See Exercises 4.1 #13. )

6.1.24 Definition. A topological space (X,τ ) is said to be a Hausdorff space (or a

T2-space) if for each pair of distinct points a and b in X, there exist open sets U and V such

that a ∈ U, b ∈ V , and U ∩ V = Ø.

Of course R, R2 and all discrete spaces are examples of Hausdorff spaces, while any set with

at least 2 elements and which has the indiscrete topology is not a Hausdorff space. With a little

thought we see that Z with the finite-closed topology is also not a Hausdorff space. (Convince

yourself of all of these facts.)

6.1.25 Proposition. Let (X, d) be any metric space and τ the topology induced on X

by d. Then (X,τ ) is a Hausdorff space.

Proof. Let a and b be any points of X, with a �= b. Then d(a, b) > 0. Put ε = d(a, b).

Consider the open balls Bε/2(a) and Bε/2(b). Then these are open sets in (X,τ ), a ∈ Bε/2(a), and

b ∈ Bε/2(b). So to show τ is Hausdorff we have to prove only that Bε/2(a) ∩Bε/2(b) = Ø.

Suppose x ∈ Bε/2(a) ∩Bε/2(b). Then d(x, a) < ε
2
and d(x, b) < ε

2
. Hence

d(a, b) ≤ d(a, x) + d(x, b)

<
ε

2
+

ε

2
= ε.

This says d(a, b) < ε, which is false. Consequently there exists no x in Bε/2(a) ∩ Bε/2(b); that is,

Bε/2(a) ∩Bε/2(b) = Ø, as required. �

6.1.26 Remark. Putting Proposition 6.1.25 together with the comments which preceded it,

we see that an indiscrete space with at least two points has a topology which is not induced by

any metric. Also Z with the finite-closed topology τ is such that τ is not induced by any metric

on Z. �
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6.1.27 Definition. A space (X,τ ) is said to be metrizable if there exists a metric d on

the set X with the property that τ is the topology induced by d.

So, for example, the set Z with the finite-closed topology is not a metrizable space.

Warning. One should not be misled by Proposition 6.1.25 into thinking that every Hausdorff

space is metrizable. Later on we shall be able to produce (using infinite products) examples of

Hausdorff spaces which are not metrizable. [Metrizability of topological spaces is quite a technical

topic. For necessary and sufficient conditions for metrizability see Theorem 9.1, page 195, of the

book Dugundji [59].]

Exercises 6.1

1. Prove that the metric d1 of Example 6.1.8 induces the euclidean topology on R2.

2. Let d be a metric on a non-empty set X.

(i) Show that the function e defined by e(a, b) = min{1, d(a, b)} where a, b ∈ X, is also a

metric on X.

(ii) Prove that d and e are equivalent metrics.

(iii) A metric space (X, d) is said to be bounded, and d is said to be a bounded metric, if

there exists a positive real number M such that d(x, y) < M , for all x, y ∈ X. Using

(ii) deduce that every metric is equivalent to a bounded metric.

3. (i) Let d be a metric on a non-empty set X. Show that the function e defined by

e(a, b) =
d(a, b)

1 + d(a, b)

where a, b ∈ X, is also a metric on X.

(ii) Prove that d and e are equivalent metrics.
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4. Let d1 and d2 be metrics on sets X and Y respectively. Prove that

(i) d is a metric on X × Y , where

d(〈x1, y1〉, 〈x2, y2〉) = max{d1(x1, x2), d2(y1, y2)}.

(ii) e is a metric on X × Y , where

e(〈x1, y1〉, 〈x2, y2〉) = d1(x1, x2) + d2(y1, y2).

(iii) d and e are equivalent metrics.

5. Let (X, d) be a metric space and τ the corresponding topology on X. Fix a ∈ X. Prove

that the map f : (X,τ ) → R defined by f(x) = d(a, x) is continuous.

6. Let (X, d) be a metric space and τ the topology induced on X by d. Let Y be a subset of

X, d1 the metric on Y obtained by restricting d; that is, d1(a, b) = d(a, b) for all a and b in

Y . If τ 1 is the topology induced on Y by d1 and τ 2 is the subspace topology on Y (induced

by τ on X), prove that τ 1 = τ 2. [This shows that every subspace of a metrizable space is

metrizable.]
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7. (i) Let �1 be the set of all sequences of real numbers

x = (x1, x2, . . . , xn, . . . )

with the property that the series
∑∞

n=1 |xn| is convergent. If we define

d1(x, y) =
∞∑
n=1

|xn − yn|

for all x and y in �1, prove that (�1, d1) is a metric space.

(ii) Let �2 be the set of all sequences of real numbers

x = (x1, x2, . . . , xn, . . . )

with the property that the series
∑∞

n=1 x
2
n is convergent. If we define

d2(x, y) =

( ∞∑
n=1

|xn − yn|2
) 1

2

for all x and y in �2, prove that (�2, d2) is a metric space.

(iii) Let �∞ denote the set of bounded sequences of real numbers x = (x1, x2, . . . , xn, . . . ).

If we define

d∞(x, y) = sup{|xn − yn| : n ∈ N}

where x, y ∈ �∞, prove that (�∞, d∞) is a metric space.

(iv) Let c0 be the subset of �∞ consisting of all those sequences which converge to zero and

let d0 be the metric on c0 obtained by restricting the metric d∞ on �∞ as in Exercise 6.

Prove that c0 is a closed subset of (�∞, d∞).

(v) Prove that each of the spaces (�1, d1), (�2, d2), and (c0, d0) is a separable space.

(vi)* Is (�∞, d∞) a separable space?

(vii) Show that each of the above metric spaces is a normed vector space in a natural way.

8. Let f be a continuous mapping of a metrizable space (X,τ ) onto a topological space (Y,τ 1).

Is (Y,τ 1) necessarily metrizable? (Justify your answer.)
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9. A topological space (X,τ ) is said to be a normal space if for each pair of disjoint closed

sets A and B, there exist open sets U and V such that A ⊆ U , B ⊆ V , and U ∩ V = Ø.

Prove that

(i) Every metrizable space is a normal space.

(ii) Every space which is both a T1-space and a normal space is a Hausdorff space. [A

normal space which is also Hausdorff is called a T4-space.]

10. Let (X, d) and (Y, d1) be metric spaces. Then (X, d) is said to be isometric to (Y, d1) if there

exists a surjective mapping f : (X, d) → (Y, d1) such that for all x1 and x2 in X,

d(x1, x2) = d1(f(x1), f(x2)).

Such a mapping f is said to be an isometry. Prove that every isometry is a homeomorphism

of the corresponding topological spaces. (So isometric metric spaces are homeomorphic!)

11. A topological space (X,τ ) is said to satisfy the first axiom of countability or be first

countable if for each x ∈ X there exists a countable family {Ui(x)} of open sets containing

x with the property that every open set V containing x has (at least) one of the Ui(x) as

a subset. The countable family {Ui(x)} is said to be a countable base at x. Prove the

following:

(i) Every metrizable space satisfies the first axiom of countability.

(ii) Every topological space satisfying the second axiom of countability also satisfies the

first axiom of countability.
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12. Let X be the set (R \ N) ∪ {1}. Define a function f : R → X by

f(x) =

{
x, if x ∈ R \ N

1, if x ∈ N.

Further, define a topology τ on X by

τ = {U : U ⊆ X and f−1(U) is open in the euclidean topology on R.}

Prove the following:

(i) f is continuous.

(ii) Every open neighbourhood of 1 in (X,τ ) is of the form (U \N)∪{1}, where U is open

in R.

(iii) (X,τ ) is not first countable.

[Hint. Suppose (U1\N)∪{1}, (U2\N)∪{1}, . . . , (Un\N)∪{1}, . . . is a countable base at

1. Show that for each positive integer n, we can choose xn ∈ Un \N such that xn > n.

Verify that the set U = R \
∞⋃
n=1

{xn} is open in R. Deduce that V = (U \ N) ∪ {1} is

an open neighbourhood of 1 which contains none of the sets (Un \N)∪ {1}, which is a

contradiction. So (X,τ ) is not first countable.]

(iv) (X,τ ) is a Hausdorff space.

(v) A Hausdorff continuous image of R is not necessarily first countable.
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13. A metric space (X, d) is said to be totally bounded if for each ε > 0, there exist x1, x2, . . . , xn

in X, such that X =
n⋃

i=1

Bε(xi); that is, X can be covered by a finite number of open balls

of radius ε.

(i) Show that every totally bounded metric space is a bounded metric space. (See Exercise

2 above.)

(ii) Prove that R with the euclidean metric is not totally bounded, but for each a, b ∈ R

with a < b, the closed interval [a, b] is totally bounded.

(iii) Let (Y, d) be a subspace of the metric space (X, d1) with the induced metric. If (X, d1)

is totally bounded, then (Y, d) is totally bounded; that is, every subspace of a totally

bounded metric space is totally bounded.

[Hint. Assume X =
n⋃

i=1

Bε(xi). If yi ∈ Bε(xi) ∩ Y , then by the triangle inequality

Bε(xi) ⊆ B2ε(yi).]

(iv) From (iii) and (ii) deduce that the totally bounded metric space (0, 1) is homeomorphic

to R which is not totally bounded. Thus “totally bounded� is not a topological property.

(v) From (iii) and (ii) deduce that for each n > 1, Rn with the euclidean metric is not

totally bounded.

(vi) Noting that for each a, b ∈ R, the closed interval is totally bounded, show that a metric

subspace of R is bounded if and only if it is totally bounded.

(vii) Show that for each n > 1, a metric subspace of Rn is bounded if and only if it is totally

bounded.

14. Show that every totally bounded metric space is separable. (See Exercise 13 above and

Exercises 3.2#4.)



114 CHAPTER 6. METRIC SPACES

15. A topological space (X,τ ) is said to be locally euclidean if there exists a positive integer

n such that each point x ∈ X has an open neighbourhood homeomorphic to an open ball

about 0 in Rn with the euclidean metric. A Hausdorff locally euclidean space is said to be

a topological manifold.1

(i) Prove that every non-trivial interval is locally euclidean.

(ii) Let T be the subset of the complex plane consisting of those complex numbers of

modulus one. Identify the complex plane with R2 and let T have the subspace topology.

Show that the space T is locally euclidean.

(iii) Show that every topological space locally homeomorphic to Rn, for any positive integer

n, is locally euclidean.

(iv)* Find an example of a locally euclidean space which is not a topological manifold.

1There are different definitions of topological manifold in the literature(cf. Kunen and Vaughan [123]). In
particular some definitions require the space to be connected – what we call a connected manifold – and older
definitions require the space to be metrizable. A Hausdorff space in which each point has an open neighbourhood
homeomorphic either to R

n or to the closed half-space {< x1, x2, . . . , xn >: xi ≥ 0, i = 1, 2, . . . , n} of R
n, for some

positive integer n, is said to be a topological manifold with boundary.
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6.2 Convergence of Sequences

You are familiar with the notion of a convergent sequence of real numbers. It is defined as follows.

The sequence x1, x2, . . . , xn, . . . of real numbers is said to converge to the real number x if given

any ε > 0 there exists an integer n0 such that for all n ≥ n0, |xn − x| < ε.

It is obvious how this definition can be extended from R with the euclidean metric to any

metric space.

6.2.1 Definitions. Let (X, d) be a metric space and x1, . . . , xn, . . . a sequence of points

in X. Then the sequence is said to converge to x ∈ X if given any ε > 0 there exists an

integer n0 such that for all n ≥ n0, d(x, xn) < ε. This is denoted by xn → x.

The sequence y1, y2, . . . , yn, . . . of points in (X, d) is said to be convergent if there exist a

point y ∈ X such that yn → y.

The next proposition is easily proved, so its proof is left as an exercise.

6.2.2 Proposition. Let x1, x2, . . . , xn, . . . be a sequence of points in a metric space (X, d).

Further, let x and y be points in (X, d) such that xn → x and xn → y. Then x = y. �
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The following proposition tells us the surprising fact that the topology of a metric space can

be described entirely in terms of its convergent sequences.

6.2.3 Proposition. Let (X, d) be a metric space. A subset A of X is closed in (X, d) if

and only if every convergent sequence of points in A converges to a point in A. (In other

words, A is closed in (X, d) if and only if an → x, where x ∈ X and an ∈ A for all n, implies

x ∈ A.)

Proof. Assume that A is closed in (X, d) and let an → x, where an ∈ A for all positive integers

n. Suppose that x ∈ X \A. Then, as X \A is an open set containing x, there exists an open ball

Bε(x) such that x ∈ Bε(x) ⊆ X \ A. Noting that each an ∈ A, this implies that d(x, an) > ε for

each n. Hence the sequence a1, a2, . . . , an, . . . does not converge to x. This is a contradiction.

So x ∈ A, as required.

Conversely, assume that every convergent sequence of points in A converges to a point of

A. Suppose that X \A is not open. Then there exists a point y ∈ X \A such that for each ε > 0,

Bε(y) ∩ A �= Ø. For each positive integer n, let xn be any point in B1/n(y) ∩ A. Then we claim

that xn → y. To see this let ε be any positive real number, and n0 any integer greater than 1/ε.

Then for each n ≥ n0,

xn ∈ B1/n(y) ⊆ B1/n0(y) ⊆ Bε(y).

So xn → y and, by our assumption, y ∈ X \ A. This is a contradiction and so X \ A is open and

thus A is closed in (X, d). �
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Having seen that the topology of a metric space can be described in terms of convergent

sequences, we should not be surprised that continuous functions can also be so described.

6.2.4 Proposition. Let (X, d) and (Y, d1) be metric spaces and f a mapping of X

into Y . Let τ and τ 1 be the topologies determined by d and d1, respectively. Then

f : (X,τ ) → (Y,τ 1) is continuous if and only if xn → x ⇒ f(xn) → f(x); that is, if

x1, x2, . . . , xn, . . . is a sequence of points in (X, d) converging to x, then the sequence of

points f(x1), f(x2), . . . , f(xn), . . . in (Y, d1) converges to f(x).

Proof. Assume that xn → x ⇒ f(xn) → f(x). To verify that f is continuous it suffices to show

that the inverse image of every closed set in (Y,τ 1) is closed in (X,τ ). So let A be closed in

(Y,τ 1). Let x1, x2, . . . , xn, . . . be a sequence of points in f−1(A) convergent to a point x ∈ X. As

xn → x, f(xn) → f(x). But since each f(xn) ∈ A and A is closed, Proposition 6.2.3 then implies

that f(x) ∈ A. Thus x ∈ f−1(A). So we have shown that every convergent sequence of points

from f−1(A) converges to a point of f−1(A). Thus f−1(A) is closed, and hence f is continuous.

Conversely, let f be continuous and xn → x. Let ε be any positive real number. Then the

open ball Bε(f(x)) is an open set in (Y,τ 1). Therefore f−1(Bε(f(x)) is an open set in (X,τ ) and

it contains x. Therefore there exists a δ > 0 such that

x ∈ Bδ(x) ⊆ f−1(Bε(f(x))).

As xn → x, there exists a positive integer n0 such that for all n ≥ n0, xn ∈ Bδ(x). Therefore

f(xn) ∈ f(Bδ(x)) ⊆ Bε(f(x)), for all n ≥ n0.

Thus f(xn) → f(x). �

The corollary below is easily deduced from Proposition 6.2.4.

6.2.5 Corollary. Let (X, d) and (Y, d1) be metric spaces, f a mapping of X into Y , and

τ and τ 1 the topologies determined by d and d1, respectively. Then f : (X,τ ) → (Y,τ 1) is

continuous if and only if for each x0 ∈ X and ε > 0, there exists a δ > 0 such that x ∈ X

and d(x, x0) < δ ⇒ d1(f(x), f(x0)) < ε. �
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Exercises 6.2

1. Let C[0, 1] and d be as in Example 6.1.5. Define a sequence of functions f1, f2, . . . , fn, . . .

in (C[0, 1], d) by

fn(x) =
sin(nx)

n
, n = 1, 2, . . . , x ∈ [0, 1].

Verify that fn → f0, where f0(x) = 0, for all x ∈ [0, 1].

2. Let (X, d) be a metric space and x1, x2, . . . , xn, . . . a sequence such that xn → x and xn → y.

Prove that x = y.

3. (i) Let (X, d) be a metric space, τ the induced topology on X, and x1, x2, . . . , xn, . . .

a sequence of points in X. Prove that xn → x if and only if for every open set U � x,

there exists a positive integer n0 such that xn ∈ U for all n ≥ n0.

(ii) Let X be a set and d and d1 equivalent metrics on X. Deduce from (i) that if xn → x

in (X, d), then xn → x in (X, d1).

4. Write out a proof of Corollary 6.2.5.

5. Let (X,τ ) be a topological space and let x1, x2, . . . , xn, . . . be a sequence of points in X.

We say that xn → x if for each open set U � x there exists a positive integer n0, such that

xn ∈ U for all n ≥ n0. Find an example of a topological space and a sequence such that

xn → x and xn → y but x �= y.

6. (i) Let (X, d) be a metric space and xn → x where each xn ∈ X and x ∈ X. Let A be the

subset of X which consists of x and all of the points xn. Prove that A is closed in

(X, d).

(ii) Deduce from (i) that the set {2} ∪ {2− 1
n
: n = 1, 2, . . . } is closed in R.

(iii) Verify that the set {2− 1
n
: n = 1, 2, . . . } is not closed in R.
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7. (i) Let d1, d2, . . . , dm be metrics on a set X and a1, a2, . . . am positive real numbers. Prove

that d is a metric on X, where d is defined by

d(x, y) =
m∑
i=1

aidi(x, y), for all x, y ∈ X.

(ii) If x ∈ X and x1, x2, . . . , xn, . . . is a sequence of points in X such that xn → x in each

metric space (X, di) prove that xn → x in the metric space (X, d).

8. Let X, Y, d1, d2 and d be as in Exercises 6.1 #4. If xn → x in (X, d1) and yn → y in (Y, d2),

prove that

〈xn, yn〉 → 〈x, y〉 in (X × Y, d).

9. Let A and B be non-empty sets in a metric space (X, d). Define

ρ(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

[ρ(A,B) is referred to as the distance between the sets A and B.]

(i) If S is any non-empty subset of (X, d), prove that S = {x : x ∈ X and ρ({x}, S) = 0}.

(ii) If S is any non-empty subset of (X, d) then the function f : (X, d) → R defined by

f(x) = ρ({x}, S), x ∈ X

is continuous.

10. (i) For each positive integer n let fn be a continuous function of [0, 1] into itself and let

a ∈ [0, 1] be such that fn(a) = a, for all n. Further let f be a continuous function of

[0, 1] into itself. If fn → f in (C[0, 1], d∗) where d∗ is the metric of Example 6.1.6, prove

that a is also a fixed point of f .

(ii) Show that (i) would be false if d∗ were replaced by the metric d, of Example 6.1.5.

6.3 Completeness

6.3.1 Definition. A sequence x1, x2, . . . , xn, . . . of points in a metric space (X, d) is

Cauchy sequence if given any real number ε > 0, there exists a positive integer n0, such that

for all integers m ≥ n0 and n ≥ n0, d(xm, xn) < ε.
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6.3.2 Proposition. Let (X, d) be a metric space and x1, x2, . . . , xn, . . . a sequence of

points in (X, d). If there exists a point a ∈ X, such that the sequence converges to a, that

is, xn → a, then the sequence is a Cauchy sequence.

Proof. Let ε be any positive real number. Put δ = ε/2. As xn → a, there exists a positive

integer n0, such that for all n > n0, d(xn, a) < δ.

So let m > n0 and n > n0. Then d(xn, a) < δ and d(xm, a) < δ.

By the triangle inequality for metrics,

d(xm, xn) ≤ d(xm, a) + d(xn, a)

< δ + δ

= ε

and so the sequence is indeed a Cauchy sequence. �

This naturally leads us to think about the converse statement and to ask if every Cauchy

sequence is a convergent sequence. The following example shows that this is not true.

6.3.3 Example. Consider the open interval (0, 1) with the euclidean metric d. It is clear that

the sequence 0.1, 0.01, 0.001, 0.0001, . . . is a Cauchy sequence but it does not converge to any

point in (0, 1). �

6.3.4 Definition. A metric space (X, d) is said to be complete if every Cauchy sequence

in (X, d) converges to a point in (X, d).

We immediately see from Example 6.3.3 that the unit interval (0,1) with the euclidean metric

is not a complete metric space. On the other hand, if X is any finite set and d is the discrete

metric on X, then obviously (X, d) is a complete metric space.

We shall show that R with the euclidean metric is a complete metric space. First we need

to do some preparation.

As a shorthand, we shall denote the sequence x1, x2, . . . , xn, . . . , by {xn}.
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6.3.5 Definition. If {xn} is any sequence, then the sequence xn1 , xn2 , . . . is said to be a

subsequence if n1 < n2 < n3 < . . . .

6.3.6 Definitions. Let {xn} be a sequence in R. Then it is said to be an increasing

sequence if xn ≤ xn+1, for all n ∈ N. It is said to be a decreasing sequence if xn ≥ xn+1, for

all n ∈ N. A sequence which is either increasing or decreasing is said to be monotonic.

Most sequences are of course neither increasing nor decreasing.

6.3.7 Definition. Let {xn} be a sequence in R. Then n0 ∈ N is said to be a peak point

if xn ≤ xn0, for every n ≥ n0.

6.3.8 Lemma. Let {xn} be any sequence in R. Then it has a monotonic subsequence.

Proof. Assume first that the sequence {xn} has an infinite number of peak points. Then

choose a subsequence {xnk
}, where each nk is a peak point. This implies, in particular, that

xnk
≥ xnk+1

, for each k ∈ N; that is, {xnk
} is a decreasing subsequence of {xn}.

Assume then that there are only a finite number of peak points. So there exists an integer

N , such that there are no peak points n > N .

Choose any n1 > N . Then it is not a peak point. So there is an n2 > n1 with xn2 > xn1. Now

n2 > N and so it too is not a peak point. Hence there is an n3 > n2, with xn3 > xn2. Continuing in

this way (by mathematical induction), we produce a subsequence {xnk
} of {xn} with xnk

< xnk+1
,

for all k ∈ N; that is, {xnk
} is an increasing subsequence of {xn}. This completes the proof of

the Lemma. �
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6.3.9 Proposition. Let {xn} be a monotonic sequence in R with the euclidean metric.

Then {xn} converges to a point in R if and only if it is bounded.

Proof. Recall that “bounded� was defined in Remark 3.3.1.

Clearly if {xn} is unbounded, then it does not converge.

Assume then that {xn} is an increasing sequence which is bounded. By the Least Upper

Bound Axiom, there is a least upper bound L of the set {xn : n ∈ N}. If ε is any positive real

number, then there exists a positive integer N such that d(xN , L) < ε; indeed, xN > L− ε.

But as {xn} is an increasing sequence and L is an upper bound, we have

L− ε < xn < L, for all n > N.

That is xn → L. The case that {xn} is a decreasing sequence which is bounded is proved in an

analogous fashion, which completes the proof. �

As a corollary to Lemma 6.3.8 and Proposition 6.3.9, we obtain immediately the following:

6.3.10 Theorem. (Bolzano-Weierstrass Theorem) Every bounded sequence in R with

the euclidean metric has a convergent subsequence. �

At long last we are able to prove that R with the euclidean metric is a complete metric space.
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6.3.11 Corollary. The metric space R with the euclidean metric is a complete metric

space.

Proof. Let {xn} be any Cauchy sequence in (R, d).

If we show that this arbitrary Cauchy sequence converges, we shall have shown that the

metric space is complete. The first step will be to show that this sequence is bounded.

As {xn} is a Cauchy sequence, there exists a positive integer N , such that for any n ≥ N

and m ≥ N , d(xn, xm) < 1; that is, |xn − xm| < 1. Put M = |x1| + |x2| + · · · + |xN | + 1. Then

|xn| < M, for all n ∈ N; that is, the sequence {xn} is bounded.

So by the Bolzano-Weierstrass Theorem 6.3.10, this sequence has a convergent subsequence;

that is, there is an a ∈ R and a subsequence {xnk
} with xnk

→ a.

We shall show that not only does the subsequence converge to a, but also that the

sequence {xn} itself converges to a.

Let ε be any positive real number. As {xn} is a Cauchy sequence, there exists a positive

integer N0 such that

|xn − xm| <
ε

2
, for all m ≥ N0 and n ≥ N0.

Since xnk
→ a, there exists a positive integer N1, such that

|xnk
− a| < ε

2
, for all nk ≥ N1.

So if we choose N2 = max{N0, N1}, combining the above two inequalities yields

|xn − a| ≤ |xn − xnk
|+ |xnk

− a|

<
ε

2
+

ε

2
, for n > N2 and nk > N2

= ε.

Hence xn → a, which completes the proof of the Corollary. �
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6.3.12 Corollary. For each positive integer m, the metric space Rm with the euclidean

metric is a complete metric space.

Proof. See Exercises 6.3#4. �

6.3.13 Proposition. Let (X, d) be a metric space, Y a subset of X, and d1 the metric

induced on Y by d.

(i) If (X, d) is a complete metric space and Y is a closed subspace of (X, d), then (Y, d1)

is a complete metric space.

(ii) If (Y, d1) is a complete metric space, then Y is a closed subspace of (X, d).

.

Proof. See Exercises 6.3#5. �

6.3.14 Remark. Example 6.3.3 showed that (0, 1) with the euclidean metric is not a complete

metric space. However, Corollary 6.3.11 showed that R with the euclidean metric is a complete

metric space. And we know that the topological spaces (0, 1) and R are homeomorphic. So

completeness is not preserved by homeomorphism and so is not a topological property.

6.3.15 Definition. A topological space (X,τ ) is said to be completely metrizable if

there exists a metric d on X such that τ is the topology on X determined by d and (X, d)

is a complete metric space.
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6.3.16 Remark. Note that being completely metrizable is indeed a topological property.

Further, it is easy to verify (see Exercises 6.3#7) that every discrete space and every interval of

R with the induced topology is completely metrizable. So for a, b ∈ R with a < b, the topological

spaces R, [a, b], (a, b), [a, b), (a, b], (−∞, a), (−∞, a], (a,∞), [a,∞), and {a} with their induced

topologies are all completely metrizable. Somewhat surprisingly we shall see later that even the

space P of all irrational numbers with its induced topology is completely metrizable. Also as (0, 1)

is a completely metrizable subspace of R which is not a closed subset, we see that Proposition

6.3.13(ii) would not be true if complete metric were replaced by completely metrizable. �

6.3.17 Definition. A topological space is said to be separable if it has a countable dense

subset.

It was seen in Exercises 3.2#4 that R and every countable topological space is a separable

space. Other examples are given in Exercises 6.1#7.

6.3.18 Definition. A topological space (X,τ ) is said to be a Polish space if it is separable

and completely metrizable.

It is clear that R is a Polish space. By Exercises 6.3#6, Rn is a Polish space, for each positive

integer n.

6.3.19 Definition. A topological space (X,τ ) is said to be a Souslin space if it is

Hausdorff and a continuous image of a Polish space. If A is a subset of a topological space

(Y,τ 1) such that with the induced topology τ 2, the space (A,τ 2) is a Souslin space, then

A is said to be an analytic set in (Y,τ 1).

Obviously every Polish space is a Souslin space. Exercises 6.1#12 and #11 show that the

converse is false as a Souslin space need not be metrizable. However, we shall see that even

a metrizable Souslin space is not necessarily a Polish space. To see this we note that every

countable topological space is a Souslin space as it is a continuous image of the discrete space

N; one such space is the metrizable space Q which we shall soon see is not a Polish space.
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We know that two topological spaces are equivalent if they are homeomorphic. It is natural

to ask when are two metric spaces equivalent (as metric spaces)? The relevant concept was

introduced in Exercises 6.1#10, namely that of isometric.

6.3.20 Definition. Let (X, d) and (Y, d1) be metric spaces. Then (X, d) is said to be

isometric to (Y, d1) if there exists a surjective mapping f : X → Y such that for all x1 and

x2 in X, d(x1, x2) = d1(f(x1), f(x2)). Such a mapping f is said to be an isometry.

Let d be any metric on R and a any positive real number. If d1 is defined to be a.d(x, y), for

all x, y ∈ R, then it is easily shown that (R, d1) is a metric space isometric to (R, d).

It is also easy to verify that any two isometric metric spaces have their associated topological

spaces homeomorphic and every isometry is also a homeomorphism of the associated topological

spaces.

6.3.21 Definition. Let (X, d) and (Y, d1) be metric spaces and f a mapping of X into

Y . Let Z = f(X), and d2 be the metric induced on Z by d1 on Y . If f : (X, d) → (Z, d2) is

an isometry, then f is said to be an isometric embedding of (X, d) in (Y, d1).

Of course the natural embedding of Q with the euclidean metric in R with the euclidean

metric is an isometric embedding. It is also the case that N with the euclidean metric has a

natural isometric embedding into both R and Q with the euclidean metric.

6.3.22 Definition. Let (X, d) and (Y, d1) be metric spaces and f a mapping of X into

Y . If (Y, d1) is a complete metric space, f : (X, d) → (Y, d1) is an isometric embedding and

f(X) is a dense subset of Y in the associated topological space, then (Y, d1) is said to be a

completion of (X, d).

Clearly R with the euclidean metric is a completion of Q, the set of rationals with the

euclidean metric, and of P, the set of irrationals with the euclidean metric.

Two questions immediately jump to mind: (1) Does every metric space have a completion?

(2) Is the completion of a metric space unique in some sense? We shall see that the answer to

both questions is “yes�.
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6.3.23 Proposition. Let (X, d) be any metric space. Then (X, d) has a completion.

Outline Proof. We begin by saying that two Cauchy sequences {yn} and {zn} in (X, d) are

equivalent if d(yn, zn) → 0 in R. This is indeed an equivalence relation; that is, it is reflexive,

symmetric and transitive. Now let X̃ be the set of all equivalence classes of equivalent Cauchy

sequences in (X, d). We wish to put a metric on X̃.

Let ỹ and z̃ be any two points in X̃. Let Cauchy sequences {yn} ∈ ỹ and {zn} ∈ z̃. Now

the sequence {d(yn, zn)} is a Cauchy sequence in R. (See Exercises 6.3#8.) As R is a complete

metric space, this Cauchy sequence in R converges to some number, which we shall denote by

d1(ỹ, z̃). It is straightforward to show that d1(ỹ, z̃) is not dependent on the choice of the sequence

{yn} in ỹ and {zn} in z̃.

For each x ∈ X, the constant sequence x, x, . . . , x, . . . is a Cauchy sequence in (X, d)

converging to x. Let x̃ denote the equivalence class of all Cauchy sequences converging to

x ∈ X. Define the subset Y of X̃ to be {x̃ : x ∈ X}. If d2 is the metric on Y induced by the

metric d1 on X̃, then it is clear that the mapping f : (X, d) → (Y, d2), given by f(x) = x̃, is an

isometry.

Now we show that Y is dense in X̃. To do this we show that for any given real number ε > 0,

and z ∈ X̃, there is a x̃ ∈ Y , such that d1(z, x̃) < ε. Note that z is an equivalence class of Cauchy

sequences. Let {xn} be a Cauchy sequence in this equivalence class z. There exists a positive

integer n0, such that for all n > n0, d1(xn, xn0) < ε. We now consider the constant sequence

xn0 , xn0 , . . . , xn0 , . . . . This lies in the equivalence class x̃n0, which is in Y . Further, d(x̃n0 , z) ≤ ε.

So Y is indeed dense in X̃.

Finally, we show that (X̃, d1) is a complete metric space. Let {zn} be a Cauchy sequence in

this space. We are required to show that it converges. As Y is dense, for each positive integer n,

there exists x̃n ∈ Y , such that d1(x̃n, zn) < 1/n. We show that {x̃n} is a Cauchy sequence in Y .

Consider a real number ε > 0. There exists a positive integer N , such that d1(zn, zm) < ε/2

for n,m > N . Now take a positive integer n1, with 1/n1 < ε/4. For n,m > n1 +N , we have

d1(x̃n, x̃m) < d1(x̃n, zn) + d1(zn, zm) + d1(zm, x̃m) < 1/n+ ε/2 + 1/m < ε.

So {x̃n} is a Cauchy sequence in Y . This implies that {xn} is a Cauchy sequence in (X, d). Hence

{xn} ∈ z, for some z ∈ Z. It is now straightforward to show first that x̃n → z and then that

zn → z, which completes the proof. �
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6.3.24 Proposition. Let (A, d1) and (B, d2) be complete metric spaces. Let X be a subset

of (A, d1) with induced metric d3, and Y a subset of (B, d2) with induced metric d4. Further,

let X be dense in (A, d1) and Y dense in (B, d2). If there is an isometry f : (X, d3) → (Y, d4),

then there exists an isometry g : (A, d1) → (B, d2), such that g(x) = f(x), for all x ∈ X.

Outline Proof. Let a ∈ A. As X is dense in (A, d1), there exists a sequence xn → a, where each

xn ∈ X. So {xn} is a Cauchy sequence. As f is an isometry, {f(xn)} is a Cauchy sequence in

(Y, d4) and hence also a Cauchy sequence in (B, d2). Since (B, d2) is a complete metric space,

there exists a b ∈ B, such that f(xn) → b. So we define g(a) = b.

To show that g is a well-defined map of A into B, it is necessary to verify that if {zn}
is any other sequence in X converging to a, then f(zn) → b. This follows from the fact that

d1(xn, zn) → 0 and thus d2(f(xn), f(zn)) = d4(f(xn), f(zn)) → 0.

Next we need to show that g : A → B is one-to-one and onto. This is left as an exercise as

it is routine.

Finally, let a1, a2 ∈ A and x1n → a1 and x2n → a2, where each a1n and each a2n is in X. Then

d1(a1, a2) = lim
n→∞

d3(a1n, a2n) = lim
n→∞

d4(f(a1n), f(a2n)) = d2(g(a1), g(a2))

and so g is indeed an isometry, as required. �

Proposition 6.3.24 says that, up to isometry, the completion of a metric spaces is unique.

We conclude this section with another concept. Recall that in Example 6.1.9 we introduced

the concept of a normed vector space. We now define a very important class of normed vector

spaces.

6.3.25 Definition. Let (N, || ||) be a normed vector space and d the associated metric

on the set N . Then (N, || ||) is said to be a Banach space if (N, d) is a complete metric

space.

From Proposition 6.3.23 we know that every normed vector space has a completion. However,

the rather pleasant feature is that this completion is in fact also a normed vector space and so is

a Banach space. (See Exercises 6.3#12.)
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Exercises 6.3

1. Verify that the sequence {xn =
n∑

i=0

1
i!
} is a Cauchy sequence in Q with the euclidean metric.

[This sequence does not converge in Q. In R it converges to the number e, which is known

to be irrational. For a proof that e is irrational, indeed transcendental, see Jones et al.

[112].]

2. Prove that every subsequence of a Cauchy sequence is a Cauchy sequence.

3. Give an example of a sequence in R with the euclidean metric which has no subsequence

which is a Cauchy sequence.

4. Using Corollary 6.3.11, prove that, for each positive integer m, the metric space Rm with

the euclidean metric is a complete metric space.

[Hint. Let {< x1n, x2n, . . . , xmn >: n = 1, 2, . . . } be a Cauchy sequence in Rm. Prove

that, for each i = 1, 2, . . . ,m, the sequence {xin : n = 1, 2, . . . } in R with the euclidean

metric is a Cauchy sequence and so converges to a point ai. Then show that the sequence

{< x1n, x2n, . . . , xmn >: n = 1, 2, . . . } converges to the point < a1, a2, . . . , am >.]

5. Prove that every closed subspace of a complete metric space is complete and that every

complete metric subspace of a metric space is closed.

6. Prove that for each positive integer n, Rn is a Polish space.

7. Let a, b ∈ R, with a < b. Prove that each discrete space and each of the spaces [a, b], (a, b),

[a, b), (a, b], (−∞, a), (−∞, a], (a,∞), [a,∞), and {a}, with its induced topology is a Polish

Spaces.

8. If (X, d) is a metric space and {xn} and {yn} are Cauchy sequences, prove that {d(xn, yn)}
is a Cauchy sequence in R.

9. Fill in the missing details in the proof of Proposition 6.3.23.

10. Fill in the missing details in the proof of Proposition 6.3.24.
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11*. Show that each of the spaces (�1, d1), (�2, d2), (c0, d0), and (�∞, d∞) of Exercises 6.1#7 is

a complete metric space. Indeed, show that each of these spaces is a Banach space in a

natural way.

12*. Let X be any normed vector space. Prove that it is possible to put a normed vector space

structure on X̃, the complete metric space constructed in Proposition 6.3.23. So every

normed vector space has a completion which is a Banach space.

6.4 Contraction Mappings

In Chapter 5 we had our first glimpse of a fixed point theorem. In this section we shall meet

another type of fixed point theorem. This section is very much part of metric space theory rather

than general topology. Nevertheless the topic is important for applications.

6.4.1 Definition. Let f be a mapping of a set X into itself. Then a point x ∈ X is said

to be a fixed point of f if f(x) = x.

6.4.2 Definition. Let (X, d) be a metric space and f a mapping of X into itself. Then

f is said to be a contraction mapping if there exists an r ∈ (0, 1), such that

d(f(x1), f(x2)) ≤ r.d(x1, x2), for all x1, x2 ∈ X.

6.4.3 Proposition. Let f be a contraction mapping of the metric space (X, d). Then f

is a continuous mapping.

Proof. See Exercises 6.4#1. �
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6.4.4 Theorem. (Contraction Mapping Theorem or Banach Fixed Point Theorem) Let

(X, d) be a complete metric space and f a contraction mapping of (X, d) into itself. Then f

has precisely one fixed point.

Proof. Let x be any point in X and consider the sequence

x, f(x), f 2(x) = f(f(x)), f3(x) = f(f(f(x))), . . . , fn(x), . . . .

We shall show this is a Cauchy sequence. Put a = d(x, f(x)). As f is a contraction mapping,

there exists r ∈ (0, 1), such that d(f(x1), f(x2)) ≤ r.d(x1, x2), for all x1, x2 ∈ X.

Let m and n be any positive integers, with n > m. Then

d(fm(x), fn(x)) = d(fm(x), fm(fn−m(x))

≤ rm.d(x, fn−m(x))

≤ rm.(d(x, f(x)) + d(f(x), f2(x)) + · · ·+ d(fn−m−1(x), fn−m(x))

≤ rm.d(x, f(x))[1 + r + r2 + · · ·+ rn−m−1]

≤ rm.a

1− r

As r < 1, it is clear that {fn(x)} is a Cauchy sequence. As (X, d) is complete there is a z ∈ X,

such that fn(x) → z.

By Proposition 6.4.3, f is continuous and so

f(z) = f
(
lim
n→∞

fn(x)
)
= lim

n→∞
fn+1(x) = z (6.1)

and so z is indeed a fixed point of f .

Finally, let t be any fixed point of f . Then

d(t, z) = d(f(t), f(z)) ≤ r.d(t, z). (6.2)

As r < 1, this implies d(t, z) = 0 and thus t = z and f has only one fixed point. �

It is worth mentioning that the Contraction Mapping Theorem provides not only an existence

proof of a fixed point but also a construction for finding it; namely, let x be any point in X and

find the limit of the sequence {fn(x)}. This method allows us to write a computer program to

approximate the limit point to any desired accuracy.
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Exercises 6.4

1. Prove Proposition 6.4.3.

2. Extend the Contraction Mapping Theorem by showing that if f is a mapping of a complete

metric space (X, d) into itself and fN is a contraction mapping for some positive integer N ,

then f has precisely one fixed point.

3. The Mean Value Theorem says: Let f be a real-valued function on a closed unit interval

[a, b] which is continuous on [a, b] and differentiable on (a, b). Then there exists a point

c ∈ [a, b] such that f(b)− f(a) = f ′(c)(b− a). (Recall that f is said to be differentiable at a

point s if lim
x→s

f(x)−f(s)
x−s

= f ′(s) exists.)

Using the Mean Value Theorem prove the following:

Let f : [a, b] → [a, b] be differentiable. Then f is a contraction if and only if there exists

r ∈ (0, 1) such that |f ′(x)| ≤ r, for all x ∈ [a, b].

4. Using Exercises 3 and 2 above, show that while f : R → R given by f(x) = cosx does not

satisfy the conditions of the Contraction Mapping Theorem, it nevertheless has a unique

fixed point.
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6.5 Baire Spaces

6.5.1 Theorem. (Baire Category Theorem) Let (X, d) be a complete metric space. If

X1, X2, . . . , Xn, . . . is a sequence of open dense subsets of X, then the set
⋂∞

n=1 Xn is also

dense in X.

Proof. It suffices to show that if U is any open subset of (X, d), then U ∩
⋂∞

n=1 Xn �= Ø.

As X1 is open and dense in X, the set U ∩X1 is a non-empty open subset of (X, d). Let U1

be an open ball of radius at most 1, such that U1 ⊂ U ∩X1.

Inductively define for each positive integer n > 1, an open ball Un of radius at most 1/n such

that Un ⊂ Un−1 ∩Xn.

For each positive integer n, let xn be any point in Un. Clearly the sequence {xn} is a Cauchy

sequence. As (X, d) is a complete metric space, this sequence converges to a point x ∈ X.

Observe that for every positive integer m, every member of the sequence {xn} is in the closed

set Um, and so the limit point x is also in the set Um.

Then x ∈ Un, for all n ∈ N. Thus x ∈
⋂∞

n=1 Un.

But as U ∩
⋂∞

n=1 Xn ⊃
⋂∞

n=1 Un � x, this implies that U ∩
⋂∞

n=1 Xn �= Ø, which completes the

proof of the theorem. �

In Exercises 3.2 #5 we introduced the notion of interior of a subset of a topological space.

6.5.2 Definition. Let (X,τ ) be any topological space and A any subset of X. The

largest open set contained in A is called the interior of A and is denoted by Int(A).

6.5.3 Definition. A subset A of a topological space (X,τ ) is said to be nowhere dense

if the set A has empty interior.

These definitions allow us to rephrase Theorem 6.5.1.
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6.5.4 Corollary. Let (X, d) be a complete metric space. If X1, X2, . . . , Xn, . . . is a

sequence of subsets of X such that X =
⋃∞

n=1 Xn, then for at least one n ∈ N, the set

Xn has non-empty interior; that is, Xn is not nowhere dense.

Proof. Exercises 6.5 #2. �

6.5.5 Definition. A topological space (X, d) is said to be a Baire space if for every

sequence {Xn} of open dense subsets of X, the set
⋂∞

n=1 Xn is also dense in X.

6.5.6 Corollary. Every complete metrizable space is a Baire space. �

6.5.7 Remarks. It is important to note that Corollary 6.5.6 is a result in topology, rather

than a result in metric space theory.

Note also that there are Baire spaces which are not completely metrizable. (See Exercises

6.5 #4(iv).) �

6.5.8 Example. The topological space Q is not a Baire space and so is not completely

metrizable. To see this, note that the set of rational numbers is countable and let

Q = {x1, x2, . . . , xn, . . . }. Each of the sets Xn = Q \ {xn} is open and dense in Q, however⋂∞
n=1 Xn = Ø. Thus Q does not have the Baire space property. �

6.5.9 Remark. You should note that (once we had the Baire Category Theorem) it was harder

to prove that Q is not completely metrizable than the more general result that Q is not a Baire

space. �
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6.5.10 Definitions. Let Y be a subset of a topological space (X,τ ). If Y is a union of

a countable number of nowhere dense subsets of X, then Y is said to be a set of the first

category or meager. If Y is not first category, it is said to be a set of the second category.

The Baire Category Theorem has many applications in analysis, but these lie outside our

study of Topology. However, we shall conclude this section with an important theorem in Banach

space theory, namely the Open Mapping Theorem. This theorem is a consequence of the Baire

Category Theorem.

6.5.11 Definition. Let S be a subset of a real vector space V . The set S is said to be

convex if for each x, y ∈ S and every real number 0 < λ < 1, the point λx+ (1− λ)y is in S.

Clearly every subspace of a vector space is convex. Also in any normed vector space, every

open ball and every closed ball is convex.
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6.5.12 Theorem. (Open Mapping Theorem) Let (B, || ||) and ((B1, || ||1) be Banach

spaces and L : B → B1 a continuous linear (in the vector space sense) mapping of B onto

B1. Then L is an open mapping.

Proof. By Exercises 6.5#1(iv), it suffices to show that there exists an N ∈ N such that

L(BN(0)) ⊃ Bs(0), for some s > 0.

Clearly B =
∞⋃
n=1

Bn(0) and as L is surjective we have B1 = L(B) =
∞⋃
n=1

L(Bn(0)).

As B1 is a Banach space, by Corollary 6.5.4 of the Baire Category Theorem, there is an

N ∈ N, such that L(BN(0)) has non-empty interior.

So there is a z ∈ B1 and t > 0, such that Bt(z)) ⊆ L(BN(0)).

By Exercises 6.5#3 there is no loss of generality in assuming that z ∈ L(BN(0)).

But Bt(z) = Bt(0) + z, and so

Bt(0) ⊆ L(BN(0))− z = L(BN(0))− z ⊆ L(BN(0))− L(BN(0)) ⊆ L(B2N(0)).

which, by the linearity of L, implies that Bt/2(0) ⊆ L(BN(0)).

We shall show that this implies that Bt/4(0) ⊆ L(BN(0)).

Let w ∈ Bt/2(0). Then there is an x1 ∈ BN(0), such that ||w − L(x1)||1 < t
4
.

Note that by linearity of the mapping L, for each integer k > 0

Bt/2(0) ⊆ L(BN(0)) =⇒ Bt/(2k)(0) ⊆ L(BN/k(0)).

So there is an x2 ∈ BN/2(0), such that

||(w − L(x1))− L(x2)||1 = ||w − L(x1)− L(x2)||1 <
t

8
.

Continuing in this way, we obtain by induction a sequence {xm} such that ||xm|| < N
2m−1 and

||w − L(x1 + x2 + · · ·+ xm)||1 = ||w − L(x1)− L(x2)− · · · − L(xm)||1 <
t

2m
.

Since B is complete, the series
∑∞

m=1 xm converges to a limit a.

Clearly ||a|| < 2N and by continuity of L, we have w = L(a) ∈ L(B2N(0)).

So Bt/2(0) ⊆ L(B2N(0)) and thus Bt/4(0) ⊆ L(BN(0)) which completes the proof. �
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The following Corollary of the Open Mapping Theorem follows immediately and is a very

important special case.

6.5.13 Corollary. A one-to-one continuous linear map of one Banach space onto another

Banach space is a homeomorphism. In particular, a one-to-one continuous linear map of a

Banach space onto itself is a homeomorphism. �

Exercises 6.5

1. Let (X,τ ) and (Y,τ 1) be topological spaces. A mapping f : (X,τ ) → (Y,τ 1) is said to be

an open mapping if for every open subset A of (X,τ ), the set f(A) is open in (Y,τ 1).

(i) Show that f is an open mapping if and only if for each U ∈ τ and each x ∈ U , the set

f(U) is a neighbourhood of f(x).

(ii) Let (X, d) and (Y, d1) be metric spaces and f a mapping of X into Y . Prove that f is

an open mapping if and only if for each n ∈ N and each x ∈ X, f(B1/n(x)) ⊇ Br(f(x)),

for some r > 0.

(iii) Let (N, || ||) and (N1, || ||1) be normed vector spaces and f a linear mapping of N into

N1. Prove that f is an open mapping if and only if for each n ∈ N, f(B1/n(0)) ⊇ Br(0),

for some r > 0.

(iv) Let (N, || ||) and (N1, || ||1) be normed vector spaces and f a linear mapping of N into

N1. Prove that f is an open mapping if and only if there exists an s > 0 such that

f(Bs(0)) ⊇ Br(0), for some r > 0.

2. Using the Baire Category Theorem, prove Corollary 6.5.4.
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3. Let A be a subset of a Banach space B. Prove the following are equivalent:

(i) the set A has non-empty interior;

(ii) there exists a z ∈ A and t > 0 such that Bt(z) ⊆ A;

(ii) there exists a y ∈ A and r > 0 such that Br(y) ⊆ A.

4. A point x in a topological space (X,τ ) is said to be an isolated point if {x} ∈ τ . Prove

that if (X,τ ) is a countable T1-space with no isolated points, then it is not a Baire space.

5. Using the version of the Baire Category Theorem in Corollary 6.5.4, prove that P is not an

Fσ-set and Q is not a Gδ-set in R.

[Hint. Suppose that P =
⋃∞

n=1 Fn, where each Fn is a closed subset of R. Then apply

Corollary 6.5.4 to R =
∞⋃
n=1

Fn ∪
⋃
q∈Q

{q}.]

6. (i) Let (X,τ ) be any topological space, and Y and S dense subsets of X. If S is also

open in (X,τ ), prove that S ∩ Y is dense in both X and Y .

(ii) Let τ 1 be the topology induced on Y by τ on X. Let {Xn} be a sequence of open

dense subsets of Y . Using (i), show that {Xn∩Y } is a sequence of open dense subsets

of (Y,τ 1).

(iii) Deduce from Definition 6.5.5 and (ii) above, that if (Y,τ 1) is a Baire space, then

(X,τ ) is also a Baire space. [So the closure of a Baire space is a Baire space.]

(iv) Using (iii), show that the subspace (Z,τ 2) of R2 given by

Z = {〈x, y〉 : x, y ∈ R, y > 0} ∪ {〈x, 0〉 : x ∈ Q},

is a Baire space, but is not completely metrizable as the closed subspace {〈x, 0〉 : x ∈ Q}
is homeomorphic to Q which is not completely metrizable.

7. Let (X,τ ) and (Y,τ 1) be topological spaces and f : (X,τ ) → (Y,τ 1) be a continuous

open mapping. If (X,τ ) is a Baire space, prove that (X,τ 1) is a Baire space. [So an open

continuous image of a Baire space is a Baire space.]

8. Let (Y,τ 1) be an open subspace of the Baire space (X,τ ). Prove that (Y,τ ) is a Baire

space. [So an open subspace of a Baire space is a Baire space.]
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9. Let (X,τ ) be a topological space. A function f : (X,τ ) → R is said to be lower

semicontinuous if for each r ∈ R, the set f−1((−∞, r]) is closed in (X,τ ). A function

f : (X,τ ) → R is said to be upper semicontinuous if for each r ∈ R, the set f−1((−∞, r))

is open in (X,τ ).

(i) Prove that f is continuous if and only if it is lower semicontinuous and upper

semicontinuous.

(ii) Let (X,τ ) be a Baire space, I an index set and for each x ∈ X, let the set {fi(x) : i ∈ I}
be bounded above, where each mapping fi : (X,τ ) → R is lower semicontinuous. Using

the Baire Category Theorem prove that there exists an open subset O of (X,τ ) such

that the set {fi(x) : x ∈ O, i ∈ I} is bounded above.

[Hint. Let Xn =
⋂
i∈I

f−1
i ((−∞, n]).]

10. Let B be a Banach space where the dimension of the underlying vector space is countable.

Using the Baire Category Theorem, prove that the dimension of the underlying vector space

is, in fact, finite.

11. Let (N, || ||) be a normed vector space and (X, τ) a convex subset of (N, || ||) with its

induced topology. Show that (X, τ) is path-connected, and hence also connected. Deduce

that every open ball in (N, || ||) is path-connected as is (N, || ||) itself.

6.6 Postscript

Metric space theory is an important topic in its own right. As well, metric spaces hold an

important position in the study of topology. Indeed many books on topology begin with metric

spaces, and motivate the study of topology via them.

We saw that different metrics on the same set can give rise to the same topology. Such

metrics are called equivalent metrics. We were introduced to the study of function spaces, and in

particular, C[0, 1]. En route we met normed vector spaces, a central topic in functional analysis.

Not all topological spaces arise from metric spaces. We saw this by observing that topologies

induced by metrics are Hausdorff.
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We saw that the topology of a metric space can be described entirely in terms of its

convergent sequences and that continuous functions between metric spaces can also be so

described.

Exercises 6.2 #9 introduced the interesting concept of distance between sets in a metric

space.

We met the concepts of Cauchy sequence, complete metric space, completely metrizable

space, Banach space, Polish space, and Souslin space. Completeness is an important topic in

metric space theory because of the central role it plays in applications in analysis. Banach spaces

are complete normed vector spaces and are used in many contexts in analysis and have a rich

structure theory. We saw that every metric space has a completion, that is can be embedded

isometrically in a complete metric space. For example every normed vector space has a completion

which is a Banach space.

Contraction mappings were introduced in the concept of fixed points and we saw the proof

of the Contraction Mapping Theorem which is also known as the Banach Fixed Point Theorem.

This is a very useful theorem in applications for example in the proof of existence of solutions of

differential equations.

Another powerful theorem proved in this chapter was the Baire Category Theorem. We

introduced the topological notion of a Baire space and saw that every completely metrizable

space is a Baire space. En route the notion of first category or meager was introduced. And then

we proved the Open Mapping Theorem which says that a continuous linear map from a Banach

space onto another Banach space must be an open mapping.

This Chapter is not yet complete. Material that is yet to be included (1) Hausdorff dimension

(2) uniform continuity and the Postscript is to be revised



Chapter 7

Compactness

Introduction

The most important topological property is compactness. It plays a key role in many branches

of mathematics. It would be fair to say that until you understand compactness you do not

understand topology!

So what is compactness? It could be described as the topologists generalization of finiteness.

The formal definition says that a topological space is compact if whenever it is a subset of a union

of an infinite number of open sets then it is also a subset of a union of a finite number of these

open sets. Obviously every finite subset of a topological space is compact. And we quickly see

that in a discrete space a set is compact if and only if it is finite. When we move to topological

spaces with richer topological structures, such as R, we discover that infinite sets can be compact.

Indeed all closed intervals [a, b] in R are compact. But intervals of this type are the only ones

which are compact.

So we are led to ask: precisely which subsets of R are compact? The Heine-Borel Theorem

will tell us that the compact subsets of R are precisely the sets which are both closed and bounded.

As we go farther into our study of topology, we shall see that compactness plays a crucial

role. This is especially so of applications of topology to analysis.

141
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7.1 Compact Spaces

7.1.1 Definition. Let A be a subset of a topological space (X,τ ). Then A is said to be

compact if for every set I and every family of open sets, Oi, i ∈ I, such that A ⊆
⋃

i∈I Oi

there exists a finite subfamily Oi1 , Oi2 . . . . , Oin such that A ⊆ Oi1 ∪Oi2 ∪ · · · ∪Oin.

7.1.2 Example. If (X,τ ) = R and A = (0,∞), then A is not compact.

Proof. For each positive integer i, let Oi be the open interval (0, i). Then, clearly, A ⊆
⋃∞

i=1 Oi.

But there do not exist i1, i2, . . . in such that A ⊆ (0, i1) ∪ (0, i2) ∪ · · · ∪ (0, in). Therefore A is not

compact. �

7.1.3 Example. Let (X,τ ) be any topological space and A = {x1, x2, . . . , xn} any finite

subset of (X,τ ). Then A is compact.

Proof. Let Oi, i ∈ I, be any family of open sets such that A ⊆
⋃

i∈I Oi. Then for each xj ∈ A,

there exists an Oij , such that xj ∈ Oij . Thus A ⊆ Oi1 ∪Oi2 ∪ · · · ∪Oin. So A is compact. �

7.1.4 Remark. So we see from Example 7.1.3 that every finite set (in a topological space) is

compact. Indeed “compactness� can be thought of as a topological generalization of “finiteness�.

�

7.1.5 Example. A subset A of a discrete space (X,τ ) is compact if and only if it is finite.

Proof. If A is finite then Example 7.1.3 shows that it is compact.

Conversely, let A be compact. Then the family of singleton sets Ox = {x}, x ∈ A is such

that each Ox is open and A ⊆
⋃

x∈AOx. As A is compact, there exist Ox1 , Ox2 , . . . , Oxn such that

A ⊆ Ox1 ∪Ox2 ∪ · · · ∪Oxn; that is, A ⊆ {x1, . . . , xn}. Hence A is a finite set. �

Of course if all compact sets were finite then the study of “compactness� would not be

interesting. However we shall see shortly that, for example, every closed interval [a, b] is compact

Firstly, we introduce a little terminology.
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7.1.6 Definitions. Let I be a set and Oi, i ∈ I, a family of open sets in a topological

space (X,τ ). Let A be a subset of (X,τ ). Then Oi, i ∈ I, is said to be an open covering

of A if A ⊆
⋃

i∈I Oi. A finite subfamily, Oi1 , Oi2 , . . . , Oin, of Oi, i ∈ I is called a finite

subcovering (of A) if A ⊆ Oi1 ∪Oi2 ∪ · · · ∪Oin.

So we can rephrase the definition of compactness as follows:

7.1.7 Definitions. A subset A of a topological space (X,τ ) is said to be compact if

every open covering of A has a finite subcovering. If the compact subset A equals X, then

(X,τ ) is said to be a compact space.

7.1.8 Remark. We leave as an exercise the verification of the following statement:

Let A be a subset of (X,τ ) and τ 1 the topology induced on A by τ . Then A is a compact subset

of (X,τ ) if and only if (A,τ 1) is a compact space.

[This statement is not as trivial as it may appear at first sight.] �
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7.1.9 Proposition. The closed interval [0, 1] is compact.

Proof. Let Oi, i ∈ I be any open covering of [0, 1]. Then for each x ∈ [0, 1], there is an Oi

such that x ∈ Oi. As Oi is open about x, there exists an interval Ux, open in [0, 1] such that

x ∈ Ux ⊆ Oi.

Now define a subset S of [0, 1] as follows:

S = {z : [0, z] can be covered by a finite number of the sets Ux}.

[So z ∈ S ⇒ [0, z] ⊆ Ux1 ∪ Ux2 ∪ · · · ∪ Uxn, for some x1, x2, . . . , xn.]

Now let x ∈ S and y ∈ Ux. Then as Ux is an interval containing x and y, [x, y] ⊆ Ux. (Here

we are assuming, without loss of generality that x ≤ y.) So

[0, y] ⊆ Ux1 ∪ Ux2 ∪ · · · ∪ Uxn ∪ Ux

and hence y ∈ S.

So for each x ∈ [0, 1], Ux ∩ S = Ux or Ø.

This implies that

S =
⋃
x∈S

Ux

and

[0, 1] \ S =
⋃
x/∈S

Ux.

Thus we have that S is open in [0, 1] and S is closed in [0, 1]. But [0, 1] is connected. Therefore

S = [0, 1] or Ø.

However 0 ∈ S and so S = [0, 1]; that is, [0, 1] can be covered by a finite number of

Ux. So [0, 1] ⊆ Ux1 ∪ Ux2 ∪ . . . Uxm. But each Uxi
is contained in an Oi, i ∈ I. Hence

[0, 1] ⊆ Oi1 ∪Oi2 ∪ · · · ∪Oim and we have shown that [0, 1] is compact. �
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Exercises 7.1

1. Let (X,τ ) be an indiscrete space. Prove that every subset of X is compact.

2. Let τ be the finite-closed topology on any set X. Prove that every subset of (X,τ ) is

compact.

3. Prove that each of the following spaces is not compact.

(i) (0, 1);

(ii) [0, 1);

(iii) Q;

(iv) P;

(v) R2;

(vi) the open disc D = {〈x, y〉 : x2 + y2 < 1} considered as a subspace of R2;

(vii) the Sorgenfrey line;

(viii) C[0, 1] with the topology induced by the metric d of Example 6.1.5:

(ix) �1, �2, �∞, c0 with the topologies induced respectively by the metrics d1, d2, d∞, and d0

of Exercises 6.1 #7.

4. Is [0, 1] a compact subset of the Sorgenfrey line?

5. Is [0, 1] ∩ Q a compact subset of Q?

6. Verify that S = {0} ∪
∞⋃
n=1

{ 1
n
} is a compact subset of R while

∞⋃
n=1

{ 1
n
} is not.
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7.2 The Heine-Borel Theorem

The next proposition says that “a continuous image of a compact space is compact�.

7.2.1 Proposition. Let f : (X,τ ) → (Y,τ 1) be a continuous surjective map. If (X,τ ) is

compact, then (Y,τ 1) is compact.

Proof. Let Oi, i ∈ I, be any open covering of Y ; that is Y ⊆
⋃

i∈I Oi.

Then f−1(Y ) ⊆ f−1(
⋃

i∈I Oi); that is, X ⊆
⋃

i∈I f
−1(Oi).

So f−1(Oi), i ∈ I, is an open covering of X.

As X is compact, there exist i1, i2, . . . , in in I such that

X ⊆ f−1(Oi1) ∪ f−1(Oi2) ∪ · · · ∪ f−1(Oin).

So Y = f(X)

⊆ f(f−1(Oi1) ∪ f−1(Oi2) ∪ · · · ∪ f−1(Oin))

= f(f−1(Oi1) ∪ f(f−1(Oi2)) ∪ · · · ∪ f(f−1(Oin))

= Oi1 ∪Oi2 ∪ · · · ∪Oin , since f is surjective.

So we have Y ⊆ Oi1

⋃
Oi2

⋃
· · ·
⋃

Oin; that is, Y is covered by a finite number of Oi.

Hence Y is compact. �

7.2.2 Corollary. Let (X,τ ) and (Y,τ 1) be homeomorphic topological spaces. If (X,τ )

is compact, then (Y,τ 1) is compact. �

7.2.3 Corollary. For a and b in R with a < b, [a, b] is compact while (a, b) is not compact.

Proof. The space [a, b] is homeomorphic to the compact space [0, 1] and so, by Proposition

7.2.1, is compact.

The space (a, b) is homeomorphic to (0,∞). If (a, b) were compact, then (0,∞) would be

compact, but we saw in Example 7.1.2 that (0,∞) is not compact. Hence (a, b) is not compact.�
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7.2.4 Proposition. Every closed subset of a compact space is compact.

Proof. Let A be a closed subset of a compact space (X,τ ). Let Ui ∈ τ , i ∈ I, be any open

covering of A. Then

X ⊆ (
⋃
i∈I

Ui) ∪ (X \ A);

that is, Ui, i ∈ I, together with the open set X \ A is an open covering of X. Therefore there

exists a finite subcovering Ui1 , Ui2 , . . . , Uik , X \ A. [If X \ A is not in the finite subcovering then

we can include it and still have a finite subcovering of X.]

So

X ⊆ Ui1 ∪ Ui2 ∪ · · · ∪ Uik ∪ (X \ A).

Therefore,

A ⊆ Ui1 ∪ Ui2 ∪ · · · ∪ Uik ∪ (X \ A)

which clearly implies

A ⊆ Ui1 ∪ Ui2 ∪ · · · ∪ Uik

since A ∩ (X \ A) = Ø. Hence A has a finite subcovering and so is compact. �

7.2.5 Proposition. A compact subset of a Hausdorff topological space is closed.

Proof. Let A be a compact subset of the Hausdorff space (X,τ ). We shall show that A

contains all its limit points and hence is closed. Let p ∈ X \ A. Then for each a ∈ A, there exist

open sets Ua and Va such that a ∈ Ua, p ∈ Va and Ua ∩ Va = Ø.

Then A ⊆
⋃

a∈A Ua. As A is compact, there exist a1, a2, . . . , an in A such that

A ⊆ Ua1 ∪ Ua2 ∪ · · · ∪ Uan .

Put U = Ua1

⋃
Ua2

⋃
· · ·
⋃

Uan and V = Va1 ∩ Va2 ∩ · · · ∩ Van . Then p ∈ V and Va ∩ Ua = Ø implies

V ∩U = Ø which in turn implies V ∩A = Ø. So p is not a limit point of A, and V is an open set

containing p which does not intersect A.

Hence A contains all of its limit points and is therefore closed. �
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7.2.6 Corollary. A compact subset of a metrizable space is closed. �

7.2.7 Example. For a and b in R with a < b, the intervals [a, b) and (a, b] are not compact as

they are not closed subsets of the metrizable space R. �

7.2.8 Proposition. A compact subset of R is bounded.

Proof. Let A ⊆ R be unbounded. Then A ⊆
⋃∞

n=1(−n, n), but {(−n, n) : n = 1, 2, 3, . . . } does

not have any finite subcovering of A as A is unbounded. Therefore A is not compact. Hence all

compact subsets of R are bounded. �

7.2.9 Theorem. (Heine-Borel Theorem) Every closed bounded subset of R is compact.

Proof. If A is a closed bounded subset of R, then A ⊆ [a, b], for some a and b in R. As [a, b] is

compact and A is a closed subset, A is compact. �

The Heine-Borel Theorem is an important result. The proof above is short only because we

extracted and proved Proposition 7.1.9 first.

7.2.10 Proposition. (Converse of Heine-Borel Theorem) Every compact subset of R

is closed and bounded.

Proof. This follows immediately from Propositions 7.2.8 and 7.2.5. �

7.2.11 Definition. A subset A of a metric space (X, d) is said to be bounded if there

exists a real number r such that d(a1, a2) ≤ r, for all a1 and a2 in A.
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7.2.12 Proposition. Let A be a compact subset of a metric space (X, d). Then A is

closed and bounded.

Proof. By Corollary 7.2.6, A is a closed set. Now fix x0 ∈ X and define the mapping

f : (A,τ ) → R by

f(a) = d(a, x0), for every a ∈ A,

where τ is the induced topology on A. Then f is continuous and so, by Proposition 7.2.1, f(A)

is compact. Thus, by Proposition 7.2.10, f(A) is bounded; that is, there exists a real number M

such that

f(a) ≤ M, for all a ∈ A.

Thus d(a, x0) ≤ M , for all a ∈ A. Putting r = 2M , we see by the triangle inequality that

d(a1, a2) ≤ r, for all a1 and a2 in A. �

Recalling that Rn denotes the n-dimensional euclidean space with the topology induced by

the euclidean metric, it is possible to generalize the Heine-Borel Theorem and its converse from

R to Rn, n > 1. We state the result here but delay its proof until the next chapter.

7.2.13 Theorem. (Generalized Heine-Borel Theorem) A subset of Rn, n ≥ 1, is

compact if and only if it is closed and bounded.

Warning. Although Theorem 7.2.13 says that every closed bounded subset of Rn is compact,

closed bounded subsets of other metric spaces need not be compact. (See Exercises 7.2 #9.)

7.2.14 Proposition. Let (X,τ ) be a compact space and f a continuous mapping from

(X,τ ) into R. Then the set f(X) has a greatest element and a least element.

Proof. As f is continuous, f(X) is compact. Therefore f(X) is a closed bounded subset of

R. As f(X) is bounded, it has a supremum. Since f(X) is closed, Lemma 3.3.2 implies that the

supremum is in f(X). Thus f(X) has a greatest element – namely its supremum. Similarly it

can be shown that f(X) has a least element. �
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7.2.15 Proposition. Let a and b be in R and f a continuous function from [a, b] into R.

Then f([a, b]) = [c, d], for some c and d in R.

Proof. As [a, b] is connected, f([a, b]) is a connected subset of R and hence is an interval. As

[a, b] is compact, f([a, b]) is compact. So f([a, b]) is a closed bounded interval. Hence

f([a, b]) = [c, d]

for some c and d in R. �

Exercises 7.2

1. Which of the following subsets of R are compact? (Justify your answers.)

(i) Z;

(ii) {
√
2
n

: n = 1, 2, 3, . . . };

(iii) {x : x = cos y, y ∈ [0, 1]};

(iv) {x : x = tan y, y ∈ [0, π/2)}.

2. Which of the following subsets of R2 are compact? (Justify your answers.)

(i) {〈x, y〉 : x2 + y2 = 4}

(ii) {〈x, y〉 : x ≥ y + 1}

(iii) {〈x, y〉 : 0 ≤ x ≤ 2, 0 ≤ y ≤ 4}

(iv) {〈x, y〉 : 0 < x < 2, 0 ≤ y ≤ 4}

3. Let (X,τ ) be a compact space. If {Fi : i ∈ I} is a family of closed subsets of X such that⋂
i∈I Fi = Ø, prove that there is a finite subfamily

Fi1 , Fi2 , . . . , Fim such that Fi1 ∩ Fi2 ∩ · · · ∩ Fim = Ø.
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4. Corollary 4.3.7 says that for real numbers a, b, c and d with a < b and c < d,

(i) (a, b) �∼= [c, d]

(ii) [a, b) �∼= [c, d].

Prove each of these using a compactness argument (rather than a connectedness argument

as was done in Corollary 4.3.7).

5. Let (X,τ ) and (Y,τ 1) be topological spaces. A mapping f : (X,τ ) → (Y,τ 1) is said to

be a closed mapping if for every closed subset A of (X,τ ), f(A) is closed in (Y,τ 1). A

function f : (X,τ ) → (Y,τ 1) is said to be an open mapping if for every open subset A of

(X,τ ), f(A) is open in (Y,τ 1).

(a) Find examples of mappings f which are

(i) open but not closed

(ii) closed but not open

(iii) open but not continuous

(iv) closed but not continuous

(v) continuous but not open

(vi) continuous but not closed.

(b) If (X,τ ) and (Y,τ 1) are compact Hausdorff spaces and f : (X,τ ) → (Y,τ 1) is a

continuous mapping, prove that f is a closed mapping.

6. Let f : (X,τ ) → (Y,τ 1) be a continuous bijection. If (X,τ ) is compact and (Y,τ 1) is

Hausdorff, prove that f is a homeomorphism.

7. Let {Cj : j ∈ J} be a family of closed compact subsets of a topological space (X,τ ). Prove

that
⋂

j∈J Cj is compact.

8. Let n be a positive integer, d the euclidean metric on Rn, and X a subset of Rn. Prove that

X is bounded in (Rn, d) if and only if there exists a positive real number M such that for

all 〈x1, x2, . . . , xn〉 ∈ X, −M ≤ xi ≤ M , i = 1, 2, . . . , n.
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9. Let (C[0, 1], d∗) be the metric space defined in Example 6.1.6. Let B = {f : f ∈ C[0, 1] and

d∗(f, 0) ≤ 1} where 0 denotes the constant function from [0, 1] into R which maps every

element to zero. (The set B is called the closed unit ball.)

(i) Verify that B is closed and bounded in (C[0, 1], d∗).

(ii) Prove that B is not compact. [Hint: Let {Bi : i ∈ I} be the family of all open balls

of radius 1
2
in (C[0, 1], d∗). Then {Bi : i ∈ I} is an open covering of B. Suppose there

exists a finite subcovering B1, B2, . . . BN . Consider the (N +1) functions fα : [0, 1] → R

given by fα(x) = sin(2N−α.π.x), α = 1, 2, . . . N + 1.

(a) Verify that each fα ∈ B.

(b) Observing that fN+1(1) = 1 and fm(1) = 0, for all m ≤ N , deduce that if fN+1 ∈ B1

then fm �∈ B1, m = 1, . . . , N .

(c) Observing that fN(
1
2
) = 1 and fm(

1
2
) = 0, for all m ≤ N −1, deduce that if fN ∈ B2

then fm �∈ B2, m = 1, . . . , N − 1.

(d) Continuing this process, show that f1, f2, . . . , fN+1 lie in distinct Bi – a contradiction.]

10. Prove that every compact Hausdorff space is a normal space.

11.* Let A and B be disjoint compact subsets of a Hausdorff space (X,τ ). Prove that there

exist disjoint open sets G and H such that A ⊆ G and B ⊆ H.

12. Let (X,τ ) be an infinite topological space with the property that every subspace is compact.

Prove that (X,τ ) is not a Hausdorff space.

13. Prove that every uncountable topological space which is not compact has an uncountable

number of subsets which are compact and an uncountable number which are not compact.

14. If (X,τ ) is a Hausdorff space such that every proper closed subspace is compact, prove that

(X,τ ) is compact.
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7.3 Postscript

Compactness plays a key role in applications of topology to all branches of analysis. As noted in

Remark 7.1.4 it can be thought as a topological generalization of finiteness.

The Generalized Heine-Borel Theorem characterizes the compact subsets of Rn as those

which are closed and bounded.

Compactness is a topological property. Indeed any continuous image of a compact space is

compact.

Closed subsets of compact spaces are compact and compact subspaces of Hausdorff spaces

are closed.

Exercises 7.2 # 5 introduces the notions of open mappings and closed mappings. Exercises

7.2 #10 notes that a compact Hausdorff space is a normal space (indeed a T4-space). That the

closed unit ball in each Rn is compact contrasts with Exercises 7.2 #9. This exercise points out

that the closed unit ball in the metric space (C[0, 1], d∗) is not compact. Though we shall not

prove it here, it can be shown that a normed vector space is finite-dimensional if and only if its

closed unit ball is compact.

Warning. It is unfortunate that “compact� is defined in different ways in different books and

some of these are not equivalent to the definition presented here. Firstly some books include

Hausdorff in the definition of compact. Some books, particularly older ones, use “compact� to

mean a weaker property than ours—what is often called sequentially compact. Finally the term

“bikompakt� is often used to mean compact or compact Hausdorff in our sense.



Chapter 8

Finite Products

Introduction

There are three important ways of creating new topological spaces from old ones. They are by

forming “subspaces�, “quotient spaces�, and “product spaces�. The next three chapters are

devoted to the study of product spaces. In this chapter we investigate finite products and prove

Tychonoff’s Theorem. This seemingly innocuous theorem says that any product of compact

spaces is compact. So we are led to ask: precisely which subsets of R are compact? The Heine-

Borel Theorem will tell us that the compact subsets of R are precisely the sets which are both

closed and bounded.

As we go farther into our study of topology, we shall see that compactness plays a crucial

role. This is especially so of applications of topology to analysis.

154
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8.1 The Product Topology

If X1, X2, . . . , Xn are sets then the product X1 × X2 × · · · × Xn is the set consisting of all the

ordered n-tuples 〈x1, x2 . . . , xn〉, where xi ∈ Xi, i = 1, . . . , n.

The problem we now discuss is:

Given topological spaces (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) how do we define a reasonable topology

τ on the product set X1 ×X2 × · · · ×Xn?

An obvious (but incorrect!) candidate for τ is the set of all sets O1×O2×· · ·×On, where Oi ∈ τ i,

i = 1, . . . , n. Unfortunately this is not a topology.

For example, if n = 2 and (X, T1) = (X,τ 2) = R then τ would contain the rectangles

(0, 1) × (0, 1) and (2, 3) × (2, 3) but not the set [(0, 1) × (0, 1)] ∪ [(2, 3) × (2, 3)], since this is not

O1 ×O2 for any choice of O1 and O2.

[If it were O1 × O2 for some O1 and O2, then
1
2
∈ (0, 1) ⊆ O1 and 21

2
∈ (2, 3) ⊆ O2 and so the

ordered pair 〈1
2
, 21

2
〉 ∈ O1 ×O2 but 〈1

2
, 21

2
〉 /∈ [(0, 1)× (0, 1)]∪ [(2, 3)× (2, 3)].] Thus τ is not closed

under unions and so is not a topology.

However we have already seen how to put a topology (the euclidean topology) on R2 = R×R.

This was done in Example 2.2.9. Indeed this example suggests how to define the product topology

in general.

8.1.1 Definitions. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) be topological spaces. Then

the product topology τ on the set X1 × X2 × · · · × Xn is the topology having the family

{O1 × O2 × . . . On, Oi ∈ τ i, i = 1, . . . , n} as a basis. The set X1 ×X2 × · · · ×Xn with the

topology τ is said to be the product of the spaces (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) and is

denoted by (X1 ×X2 × . . . Xn,τ ) or (X1,τ 1)× (X2,τ 2)× · · · × (Xn,τ n).

Of course it must be verified that the family {O1 × O2 × · · · × On : Oi ∈ τ i, i = 1, . . . , n} is

a basis for a topology; that is, it satisfies the conditions of Proposition 2.2.8. (This is left as an

exercise for you.)
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8.1.2 Proposition. Let B1, B2, . . . ,Bn be bases for topological spaces (X1,τ 1),

(X2,τ 2), . . . , (Xn,τ n), respectively. Then the family {O1×O2×· · ·×On : Oi ∈ Bi, i = 1, . . . , n}
is a basis for the product topology on X1 ×X2 × · · · ×Xn.

The proof of Proposition 8.1.2 is straightforward and is also left as an exercise for you.

8.1.3 Observations (i) We now see that the euclidean topology on Rn, n ≥ 2, is just the

product topology on the set R × R × · · · × R = Rn. (See Example 2.2.9 and Remark 2.2.10.)

(ii) It is clear from Definitions 8.1.1 that any product of open sets is an open set or more

precisely: if O1, O2, . . . , On are open subsets of topological spaces (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n),

respectively, then O1 ×O2 × . . . On is an open subset of (X1,τ 1)× (X2,τ 2)× · · · × (Xn,τ n). The

next proposition says that any product of closed sets is a closed set.

8.1.4 Proposition. Let C1, C2, . . . , Cn be closed subsets of the topological spaces

(X1,τ 1), (X2,τ 2),. . . , (Xn,τ n), respectively. Then C1 × C2 × · · · × Cn is a closed subset of

the product space (X1 ×X2 × · · · ×Xn,τ ).

Proof. Observe that

(X1 ×X2 × · · · ×Xn) \ (C1 × C2 × · · · × Cn)

= [(X1 \ C1)×X2 × · · · ×Xn] ∪ [X1 × (X2 \ C2)×X3 × · · · ×Xn] ∪

· · · ∪ [X1 ×X2 × · · · ×Xn−1 × (Xn \ Cn)]

which is a union of open sets (as a product of open sets is open) and so is an open set in

(X1,τ 1)× (X2,τ 2)× · · · × (Xn,τ n). Therefore its complement, C1 × C2 × . . . Cn, is a closed set,

as required. �
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Exercises 8.1

1. Prove Proposition 8.1.2.

2. If (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) are discrete spaces, prove that the product space (X1,τ 1)×
(X2,τ 2)× · · · × (Xn,τ n) is also a discrete space.

3. Let X1 and X2 be infinite sets and τ 1 and τ 2 the finite-closed topology on X1 and X2,

respectively. Show that the product topology, τ , on X1×X2 is not the finite-closed topology.

4. Prove that the product of any finite number of indiscrete spaces is an indiscrete space.

5. Prove that the product of any finite number of Hausdorff spaces is Hausdorff.

6. Let (X,τ ) be a topological space and D = {(x, x) : x ∈ X} the diagonal in the product

space (X,τ )× (X,τ ) = (X ×X,τ 1). Prove that (X,τ ) is a Hausdorff space if and only if

D is closed in (X ×X,τ 1).

7. Let (X1,τ 1), (X2,τ 2) and (X3,τ 3) be topological spaces. Prove that

[(X1,τ 1)× (X2,τ 2)]× (X3, T3) ∼= (X1,τ 1)× (X2,τ 2)× (X3,τ 3).

8. (i) Let (X1,τ 1) and (X2,τ 2) be topological spaces. Prove that

(X1,τ 1)× (X2,τ 2) ∼= (X2,τ 2)× (X1,τ 1).

(ii) Generalize the above result to products of any finite number of topological spaces.
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9. Let C1, C2, . . . , Cn be subsets of the topological spaces (X1,τ 1), (X2,τ 2), . . . , (Xn, Tn),

respectively, so that C1 × C2 × · · · × Cn is a subset of (X1,τ 1)× (X2,τ 2)× · · · × (Xn,τ n).

Prove each of the following statements.

(i) (C1 × C2 × · · · × Cn)
′ ⊇ C ′

1 × C ′
2 × · · · × C ′

n ;

(ii) C1 × C2 × · · · × Cn = C1 × C2 × · · · × Cn ;

(iii) if C1, C2, . . . , Cn are dense in (X1,τ 1), (X2,τ 2) , . . . , (Xn,τ n), respectively, then

C1 × C2 × · · · × Cn is dense in the product space (X1,τ 1)× (X2,τ 2)× · · · × (Xn,τ n) ;

(iv) if (X1,τ 1), (X2, T2), . . . , (Xn,τ n) are separable spaces, then (X1,τ 1)× (X2, T2)×· · ·×
(Xn,τ n) is a separable space;

(v) for each n ≥ 1, Rn is a separable space.

10. Show that the product of a finite number of T1-spaces is a T1-space.

11. If (X1,τ 1), . . . , (Xn,τ n) satisfy the second axiom of countability, show that (X1,τ 1) ×
(X2,τ 2)× · · · × (Xn,τ n) satisfies the second axiom of countability also.

12. Let (R,τ 1) be the Sorgenfrey line, defined in Exercises 3.2 #11, and (R2,τ 2) be the product

space (R,τ 1)× (R,τ 1). Prove the following statements.

(i) {〈x, y〉 : a ≤ x < b, c ≤ y < d, a, b, c, d ∈ R} is a basis for the topology τ 2.

(ii) (R2,τ 2) is a regular separable totally disconnected Hausdorff space.

(iii) Let L = {〈x, y〉 : x, y ∈ R and x + y = 0}. Then the line L is closed in the euclidean

topology on the plane and hence also in (R2,τ 2).

(iv) If τ 3 is the subspace topology induced on the line L by τ 2, then τ 3 is the discrete

topology, and hence (L,τ 3) is not a separable space. [As (L,τ 3) is a closed subspace

of the separable space (R2,τ 2), we now know that a closed subspace of a separable

space is not necessarily separable.]

[Hint: show that L ∩ {〈x, y〉 : a ≤ x < a + 1, −a ≤ y < −a + 1, a ∈ R} is a singleton

set.]
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8.2 Projections onto Factors of a Product

Before proceeding to our next result we need a couple of definitions.

8.2.1 Definitions. Let τ 1 and τ 2 be topologies on a set X. Then τ 1 is said to be a

finer topology than τ 2 (and τ 2 is said to be a coarser topology than τ 1) if τ 1 ⊇ τ 2.

8.2.2 Example. The discrete topology on a set X is finer than any other topology on X.

The indiscrete topology on X is coarser than any other topology on X. [See also Exercises 5.1

#10.] �

8.2.3 Definitions. Let (X,τ ) and (Y,τ 1) be topological spaces and f a mapping from

X into Y . Then f is said to be an open mapping if for every A ∈ T , f(A) ∈ τ 1. The

mapping f is said to be a closed mapping if for every closed set B in (X,τ ), f(B) is closed

in (Y,τ 1).

8.2.4 Remark. In Exercises 7.2 #5, you were asked to show that none of the conditions

“continuous mapping�, “open mapping�, “closed mapping�, implies either of the other two

conditions. Indeed no two of these conditions taken together implies the third. (Find examples

to verify this.) �
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8.2.5 Proposition. Let (X,τ 1, ), (X2,τ 2), . . . , (Xn,τ n) be topological spaces and

(X1 ×X2 × · · · ×Xn,τ ) their product space.

For each i ∈ {1, . . . , n}, let pi : X1 ×X2 × · · · ×Xn → Xi be the projection mapping; that is,

pi(〈x1, x2, . . . , xi, . . . , xn〉) = xi, for each 〈x1, x2, . . . , xi, . . . , xn〉 ∈ X1 ×X2 × · · · ×Xn. Then

(i) each pi is a continuous surjective open mapping, and

(ii) τ is the coarsest topology on the set X1×X2×· · ·×Xn such that each pi is continuous.

Proof. Clearly each pi is surjective. To see that each pi is continuous, let U be any open set

in (X1,τ i). Then

p−1
i (U) = X1 ×X2 × · · · ×Xi−1 × U ×Xi+1 × · · · ×Xn

which is a product of open sets and so is open in (X1 × X2 × · · · × Xn,τ ). Hence each pi is

continuous.

To show that pi is an open mapping it suffices to verify that for each basic open set

U1 ×U2 × · · · ×Un, where Uj is open in (Xj,τ j), for j = 1, . . . , n, the set pi(U1 ×U2 × · · · ×Un) is

open in (Xi,τ i). But pi(U1 × U2 × · · · × Un) = Ui which is, of course, open in (Xi,τ i). So each

pi is an open mapping. We have now verified part (i) of the proposition.

Now let τ ′ be any topology on the set X1×X2×· · ·×Xn such that each projection mapping

pi : (X1 ×X2 × · · · ×Xn,τ ′) → (Xi,τ i) is continuous. We have to show that τ ′ ⊇ T .

Recalling the definition of the basis for the topology τ (given in Definition 8.1.1) it suffices

to show that if O1, O2, . . . , On are open sets in (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) respectively, then

O1 × O2 × · · · × On ∈ τ ′. To show this, observe that as pi is continuous, p−1
i (Oi) ∈ τ ′, for each

i = 1, . . . , n. Now

p−1
i (Oi) = X1 ×X2 × · · · ×Xi−1 ×Oi ×Xi+1 × · · · ×Xn,

so that
n⋂

i=1

p−1
i (Oi) = O1 ×O2 × · · · ×On.

Then p−1
i (Oi) ∈ τ ′ for i = 1, . . . , n, implies

⋂n
i=1 p

−1
i (Oi) ∈ τ ′ ; that is, O1 ×O2 × · · · ×On ∈ τ ′, as

required. �
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8.2.6 Remark. Proposition 8.2.5 (ii) gives us another way of defining the product topology.

Given topological spaces (X1, T1), (X2,τ 2), . . . , (Xn,τ n) the product topology can be defined as

the coarsest topology on X1×X2×· · ·×Xn such that each projection pi : X1×X2× . . . Xn → Xi is

continuous. This observation will be of greater significance in the next section when we proceed

to a discussion of products of an infinite number of topological spaces. �

8.2.7 Corollary. For n ≥ 2, the projection mappings of Rn onto R are continuous open

mappings. �
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8.2.8 Proposition. Let (X1,τ 1), (X2,τ 2), . . . , (Xn, Tn) be topological spaces and

(X1 × X2 × · · · × Xn,τ ) the product space. Then each (Xi,τ i) is homeomorphic to a

subspace of (X1 ×X2 × · · · ×Xn,τ ).

Proof. For each j, let aj be any (fixed) element in Xj. For each i, define a mapping

fi : (Xi,τ i) → (X1 ×X2 × · · · ×Xn,τ ) by

fi(x) = 〈a1, a2, . . . , ai−1, x, ai+1, . . . , an〉.

We claim that fi : (Xi,τ i) → (fi(Xi),τ ′) is a homeomorphism, where τ ′ is the topology induced

on fi(Xi) by τ . Clearly this mapping is one-to-one and onto. Let U ∈ τ i. Then

fi(U) = {a1} × {a2} × · · · × {ai−1} × U × {ai+1} × · · · × {an}

= (X1 ×X2 × · · · ×Xi−1 × U ×Xi+1 × · · · ×Xn) ∩

({a1} × {a2} × · · · × {ai−1} ×Xi × {ai+1} × · · · × {an})

= (X1 ×X2 × · · · ×Xi−1 × U ×Xi+1 × · · · ×Xn) ∩ fi(Xi)

∈ τ ′

since X1 ×X2 × · · · ×Xi−1 × U ×Xi+1 × · · · ×Xn ∈ τ . So U ∈ τ i implies that fi(U) ∈ τ ′.

Finally, observe that the family

{(U1 × U2 × · · · × Un) ∩ fi(Xi) : Ui ∈ Ti, i = 1, . . . , n}

is a basis for τ ′, so to prove that fi is continuous it suffices to verify that the inverse image under

fi of every member of this family is open in (Xi,τ i). But

f−1
i [(U1 × U2 × . . . Un) ∩ fi(Xi)] = f−1

i (U1 × U2 × · · · × Un) ∩ f−1
i (fi(Xi))

=

{
Ui ∩Xi, if aj ∈ Uj, j �= i

Ø, if aj /∈ Uj, for some j �= i.

As Ui ∩Xi = Ui ∈ τ i and Ø ∈ τ i we infer that fi is continuous, and so we have the required

result. �

Notation. If X1, X2, . . . , Xn are sets then the product X1 × X2 × · · · × Xn is denoted by∏n
i=1 Xi. If (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) are topological spaces, then the product space

(X1,τ 1)× (X2,τ 2)× · · · × (Xn,τ n) is denoted by
∏n

i=1(Xi,τ i). �
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Exercises 8.2

1. Prove that the euclidean topology on R is finer than the finite-closed topology.

2. Let (Xi,τ i) be a topological space, for i = 1, . . . , n. Prove that

(i) if
∏n

i=1(Xi,τ i) is connected, then each (Xi,τ i) is connected;

(ii) if
∏n

i=1(Xi,τ i) is compact, then each (Xi,τ i) is compact;

(iii) if
∏n

i=1(Xi,τ i) is path-connected, then each (Xi,τ i) is path-connected;

(iv) if
∏n

i=1(Xi,τ i) is Hausdorff, then each (Xi,τ i) is Hausdorff;

(v) if
∏n

i=1(Xi,τ i) is a T1-space, then each (Xi,τ i) is a T1-space.

3. Let (Y,τ ) and (Xi,τ i), i = 1, 2, ..., n be topological spaces. Further for each i, let fi be a

mapping of (Y,τ ) into (Xi,τ i). Prove that the mapping f : (Y,τ ) →
∏n

i=1(Xi,τ i), given

by

f(y) = 〈f1(y), f2(y), . . . , fn(y)〉,

is continuous if and only if every fi is continuous.

[Hint: Observe that fi = pi ◦ f , where pi is the projection mapping of
∏n

j=1(Xj,τ j) onto

(Xi, Ti).]

4. Let (X, d1) and (Y, d2) be metric spaces. Further let e be the metric on X × Y defined in

Exercises 6.1 #4. Also let τ be the topology induced on X × Y by e. If d1 and d2 induce

the topologies τ 1 and τ 2 on X and Y , respectively, and τ 3 is the product topology of

(X,τ 1)× (Y,τ 2), prove that τ = τ 3. [This shows that the product of any two metrizable

spaces is metrizable.]

5. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) be topological spaces. Prove that
∏n

i=1(Xi,τ i) is a

metrizable space if and only if each (Xi,τ i) is metrizable.

[Hint: Use Exercises 6.1 #6, which says that every subspace of a metrizable space is

metrizable, and Exercise 4 above.]
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8.3 Tychonoff’s Theorem for Finite Products

8.3.1 Theorem. (Tychonoff’s Theorem for Finite Products) If (X1, T1), (X2, T2), . . . ,

(Xn,τ n) are compact spaces, then
∏n

i=1(Xi,τ i) is a compact space.

Proof. Consider first the product of two compact spaces (X,τ 1) and (Y,τ 2). Let Ui, i ∈ I be

any opening covering of X × Y . Then for each x ∈ X and y ∈ Y , there exists an i ∈ I such that

〈x, y〉 ∈ Ui. So there is a basic open set V (x, y)×W (x, y), such that V 〈x, y〉 ∈ τ 1, W (x, y) ∈ τ 2

and 〈x, y〉 ∈ V (x, y)×W (x, y) ⊆ Ui.

As 〈x, y〉 ranges over all points of X × Y we obtain an open covering V (x, y) × W (x, y),

x ∈ X, y ∈ Y , of X × Y such that each V (x, y) × W (x, y) is a subset of some Ui, i ∈ I. Thus

to prove (X,τ 1)× (Y,τ 2) is compact it suffices to find a finite subcovering of the open covering

V (x, y)×W (x, y), x ∈ X, y ∈ Y .

Now fix x0 ∈ X and consider the subspace {x0} × Y of X × Y . As seen in Proposition 8.2.8

this subspace is homeomorphic to (Y,τ 2) and so is compact. As V (x0, y) ×W (x0, y), y ∈ Y , is

an open covering of {x0} × Y it has a finite subcovering:

V (x0, y1)×W (x0, y1), V (x0, y2)×W (x0, y2), . . . , V (x0, ym)×W (x0, ym).

Put V (x0) = V (x0, y1) ∩ V (x0, y2) ∩ · · · ∩ V (x0, ym). Then we see that the set V (x0) × Y is

contained in the union of a finite number of sets of the form V (x0, y)×W (x0, y), y ∈ Y.

Thus to prove X×Y is compact it suffices to show that X×Y is contained in a finite union of

sets of the form V (x)×Y . As each V (x) is an open set containing x ∈ X, the family V (x), x ∈ X,

is an open covering of the compact space (X,τ 1). Therefore there exist x1, x2, . . . , xk such that

X ⊆ V (x1) ∪ V (x2) ∪ . . . V (xk). Thus X × Y ⊆ (V (x1)× Y ) ∪ (V (x2)× Y ) ∪ · · · ∪ (V (xk)× Y ), as

required. Hence (X,τ 1)× (Y,τ 2) is compact.

The proof is completed by induction. Suppose that the product of any N compact spaces

is compact. Consider the product (X1,τ 1) × (X2,τ 2) × · · · × (XN+1,τN+1) of compact spaces

(Xi,τ i), i = 1, . . . , N + 1. Then

(X1,τ 1)× (X2,τ 2)× · · · × (XN + 1,τN + 1) ∼= [(X1,τ 1)× · · · × (XN , TN)]× (XN + 1,τN + 1).

By our inductive hypothesis (X1,τ 1) × · · · × (XN ,τN) is compact, so the right-hand side is the

product of two compact spaces and thus is compact. Therefore the left-hand side is also compact.

This completes the induction and the proof of the theorem. �
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Using Proposition 7.2.1 and 8.2.5 (i) we immediately obtain:

8.3.2 Proposition. (Converse of Tychonoff’s Theorem) Let (X1,τ 1), (X2,τ 2), . . . ,

(Xn,τ n) be topological spaces. If
∏n

i=1(Xi,τ i) is compact, then each (Xi,τ i) is compact.�

We can now prove the previously stated Theorem 7.2.13.

8.3.3 Theorem. (Generalized Heine-Borel Theorem) A subset of Rn, n ≥ 1 is compact

if and only if it is closed and bounded.

Proof. That any compact subset of Rn is bounded can be proved in an analogous fashion to

Proposition 7.2.8. Thus by Proposition 7.2.5 any compact subset of Rn is closed and bounded.

Conversely let S be any closed bounded subset of Rn. Then, by Exercises 7.2 #8, S is a

closed subset of the product

n terms︷ ︸︸ ︷
[−M,M ]× [−M,M ]× · · · × [−M,M ]

for some positive real number M. As each closed interval [−M,M ] is compact, by Corollary 7.2.3,

Tychonoff’s Theorem implies that the product space

[−M,M ]× [−M,M ]× · · · × [−M,M ]

is also compact. As S is a closed subset of a compact set, it too is compact. �

8.3.4 Example. Define the subspace S1 of R2 by

S1 = {〈x, y〉 : x2 + y2 = 1}.

Then S1 is a closed bounded subset of R2 and thus is compact.

Similarly we define the n-sphere Sn as the subspace of Rn+1 given by

Sn = {〈x1, x2, . . . , xn+1〉 : x2
1 + x2

2 + · · ·+ x2
n+1 = 1}.

Then Sn is a closed bounded subset of Rn+1 and so is compact. �
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8.3.5 Example. The subspace S1 × [0, 1] of R3 is the product of two compact spaces and so

is compact. (Convince yourself that S1 × [0, 1] is the surface of a cylinder.) �

Exercises 8.3

1. A topological space (X,τ ) is said to be locally compact if each point x ∈ X has at least

one neighbourhood which is compact. Prove that

(i) Every compact space is locally compact.

(ii) R and Z are locally compact (but not compact).

(iii) Every discrete space is locally compact.

(iv) If (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) are locally compact spaces, then
∏n

i=1(Xi,τ i) is

locally compact.

(v) Every closed subspace of a locally compact space is locally compact.

(vi) A continuous image of a locally compact space is not necessarily locally compact.

(vii) If f is a continuous open mapping of a locally compact space (X,τ ) onto a topological

space (Y,τ 1), then (Y,τ 1) is locally compact.

(viii) If (X1,τ 1), (X2,τ 2), . . . , (Xn, Tn) are topological spaces such that
∏n

i=1(Xiτ i) is locally

compact, then each (Xi,τ i) is locally compact.

2.* Let (Y,τ 1) be a locally compact subspace of the Hausdorff space (X,τ ). If Y is dense in

(X,τ ), prove that Y is open in (X,τ ).

[Hint: Use Exercises 3.2 #9]
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8.4 Products and Connectedness

8.4.1 Definition. Let (X,τ ) be a topological space and let x be any point in X. The

component in X of x, CX(x), is defined to be the union of all connected subsets of X which

contain x.

8.4.2 Proposition. Let x be any point in a topological space (X,τ ). Then CX(x) is

connected.

Proof. Let {Ci : i ∈ I} be the family of all connected subsets of (X,τ ) which contain x.

(Observe that {x} ∈ {Ci : i ∈ I}.) Then CX(x) =
⋃

i∈I Ci.

Let O be a subset of CX(x) which is clopen in the topology induced on CX(x) by τ . Then

O ∩ Ci is clopen in the induced topology on Ci, for each i.

But as each Ci is connected, O∩Ci = Ci or Ø, for each i. If O∩Cj = Cj for some j ∈ I, then

x ∈ O. So, in this case, O ∩ Ci �= Ø, for all i ∈ I as each Ci contains x. Therefore O ∩ Ci = Ci,

for all i ∈ I or O ∩ Ci = Ø, for all i ∈ I; that is, O = CX(x) or O = Ø.

So CX(x) has no proper non-empty clopen subset and hence is connected. �

8.4.3 Remark. We see from Definition 8.4.1 and Proposition 8.4.2 that CX(x) is the largest

connected subset of X which contains x. �

8.4.4 Lemma. Let a and b be points in a topological space (X,τ ). If there exists a

connected set C containing both a and b then CX(a) = CX(b).

Proof. By Definition 8.4.1, CX(a) ⊇ C and CX(b) ⊇ C. Therefore a ∈ CX(b).

By Proposition 8.4.2, CX(b) is connected and so is a connected set containing a. Thus, by

Definition 8.4.1, CX(a) ⊇ CX(b).

Similarly CX(b) ⊇ CX(a), and we have shown that CX(a) = CX(b). �
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8.4.5 Proposition. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) be topological spaces. Then∏n
i=1(Xi,τ i) is connected if and only if each (Xi,τ i) is connected.

Proof. To show that the product of a finite number of connected spaces is connected, it suffices

to prove that the product of any two connected spaces is connected, as the result then follows

by induction.

So let (X,τ ) and (Y,τ 1) be connected spaces and 〈x0, y0〉 any point in the product space

(X ×Y,τ 2). Let 〈x1, y1〉 be any other point in X ×Y . Then the subspace {x0}×Y of (X ×Y,τ )

is homeomorphic to the connected space (Y,τ 1) and so is connected.

Similarly the subspace X × {y1} is connected. Furthermore, 〈x0, y1〉 lies in the connected

space {x0} × Y , so CX×Y (〈x0, y1〉) ⊇ {x0} × Y � 〈x0, y0〉, while 〈x0, y1〉 ∈ X × {y1}, and so

CX×Y ((x0, y1)) ⊇ X × {y1} � (x1, y1).

Thus 〈x0, y0〉 and 〈x1, y1〉 lie in the connected set CX×Y (〈x0, y1〉), and so by Lemma 8.4.4,

CX×Y (〈x0, y0〉) = CX×Y (〈x1, y1〉). In particular, 〈x1, y1〉 ∈ CX×Y (〈x0, y0〉). As 〈x1, y1〉 was an

arbitrary point in X × Y , we have that CX×Y (〈x0, y0〉) = X × Y. Hence (X × Y,τ 2) is connected.

Conversely if
∏n

i=1(Xi,τ i) is connected then Propositions 8.2.5 and 5.2.1 imply that each

(Xi,τ i) is connected. �

8.4.6 Remark. In Exercises 5.2 #9 the following result appears: For any point x in any

topological space (X,τ ), the component CX(x) is a closed set. �

8.4.7 Definition. A topological space is said to be a continuum if it is compact and

connected.

As an immediate consequence of Theorem 8.3.1 and Propositions 8.4.5 and 8.3.2 we have

the following proposition.

8.4.8 Proposition. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) be topological spaces. Then∏n
i=1(Xi,τ i) is a continuum if and only if each (Xi,τ i) is a continuum. �
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Exercises 8.4

1. A topological space (X,τ ) is said to be a compactum if it is compact and metrizable. Let

(X1,τ 1), (X2, T2), . . . , (Xn,τ n) be topological spaces. Using Exercises 8.2#5, prove that∏n
i=1(Xi,τ i) is a compactum if and only if each (Xi,τ i) is a compactum.

2. Let (X, d) be a metric space and τ the topology induced on X by d.

(i) Prove that the function d from the product space (X, T )× (X,τ ) into R is continuous.

(ii) Using (i) show that if the metrizable space (X,τ ) is connected and X has at least 2

points, then X has the uncountable number of points.

3. If (X,τ ) and (Y,τ 1) are path-connected spaces, prove that the product space (X,τ )×(Y,τ 1)

is path-connected.

4. (i) Let x = (x1, x2, . . . , xn) be any point in the product space (Y,τ ) =
∏n

i=1(Xi,τ i). Prove

that CY (x) = CX1(x1)× CX2(x2)× · · · × CXn(xn).

(ii) Deduce from (i) and Exercises 5.2 #10 that
∏n

i=1(Xi,τ i) is totally disconnected if and

only if each (Xi, Ti) is totally disconnected.
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5. Let G be a group and τ be a topology on the set G. Then (G,τ ) is said to be a topological

group if the mappings

(G,τ ) −→ (G,τ ) and (G,τ )× (G,τ ) −→ (G,τ )

x −→ x−1 (x, y) −→ x · y

are continuous, where x and y are any elements of the group G, and x·y denotes the product

in G of x and y. Show that

(i) R, with the group operation being addition, is a topological group.

(ii) Let T be the subset of the complex plane consisting of those complex numbers

of modulus one. If the complex plane is identified with R2 (and given the usual

topology), then T with the subspace topology and the group operation being complex

multiplication, is a topological group. [This topological group is called the circle group.]

(iii) Let (G,τ ) be any topological group, U a subset of G and g any element of G. Then

g ∈ U ∈ τ if and only if e ∈ g−1 · U ∈ τ , where e denotes the identity element of G.

(iv) Let (G,τ ) be any topological group and U any open set containing the identity element

e. Then there exists an open set V containing e such that

{v1.v2 : v1 ∈ V and v2 ∈ V } ⊆ U.

(v)* Any topological group (G,τ ) which is a T1-space is also a Hausdorff space.

6. A topological space (X,τ ) is said to be locally connected if it has a basis B consisting of

connected (open) sets.

(i) Verify that Z is a locally connected space which is not connected.

(ii) Show that Rn and Sn are locally connected, for all n ≥ 1.

(iii) Let (X,τ ) be the subspace of R2 consisting of the points in the line segments joining

〈0, 1〉 to 〈0, 0〉 and to all the points 〈 1
n
, 0〉, n = 1, 2, 3, . . . . Show that (X,τ ) is connected

but not locally connected.

(iv) Prove that every open subset of a locally connected space is locally connected.

(v) Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) be topological spaces. Prove that
∏n

i=1(Xi,τ i) is

locally connected if and only if each (Xi,τ i) is locally connected.
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8.5 Fundamental Theorem of Algebra

In this section we give an application of topology to another branch of mathematics. We show

how to use compactness and the Generalized Heine-Borel Theorem to prove the Fundamental

Theorem of Algebra.

8.5.1 Theorem. (The Fundamental Theorem of Algebra) Every polynomial

f(z) = anz
n + an−1z

n−1 + · · · + a1z + a0, where each ai is a complex number, an �= 0,

and n ≥ 1, has a root; that is, there exists a complex number z0 s.t. f(z0) = 0.

Proof.

|f(z)| = |anzn + an−1z
n−1 + · · ·+ a0|

≥ |an||z|n − |z|n−1

[
|an−1|+

|an−2|
|z| + · · ·+ |a0|

|z|n−1

]
≥ |an||z|n − |z|n−1 [|an−1|+ |an−2|+ · · ·+ |a0|] , for |z| ≥ 1

= |z|n−1[|an||z| −R], for |z| ≥ 1 and R = |an−1|+ · · ·+ |a0|

≥ |z|n−1, for |z| ≥ max

{
1,

R + 1

|an|

}
. (1)

If we put p0=|f(0)| = |a0| then, by inequality (1), there exists a T > 0 such that

|f(z)| > p0, for all |z| > T (2)

Consider the set D = {z : z ∈ complex plane and |z| ≤ T}. This is a closed bounded subset

of the complex plane C = R2 and so, by the Generalized Heine-Borel Theorem, is compact.

Therefore, by Proposition 7.2.14, the continuous function |f | : D → R has a least value at some

point z0. So

|f(z0)| ≤ |f(z)|, for all z ∈ D.

By (2), for all z /∈ D, |f(z)| > p0 = |f(0)| ≥ |f(z0)|. Therefore

|f(z0)| ≤ |f(z)|, for all z ∈ C (3)

So we are required to prove that f(z0) = 0. To do this it is convenient to perform a

‘translation’. Put P (z) = f(z + z0). Then, by (2),

|P (0)| ≤ |P (z)|, for all z ∈ C (4)
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The problem of showing that f(z0) = 0 is now converted to the equivalent one of proving that

P (0) = 0.

Now P (z) = bnz
n + bn−1z

n−1 · · ·+ b0, bi ∈ C. So P (0) = b0. We shall show that b0 = 0.

Suppose b0 �= 0. Then

P (z) = b0 + bkz
k + zk+1Q(z), (5)

where Q(z) is a polynomial and bk is the smallest bi �= 0, i > 0.

e.g. if P (z) = 10z7 + 6z5 + 3z4 + 4z3 + 2z2 + 1, then b0 = 1, bk = 2, (b1 = 0), and

P (z) = 1 + 2z2 + z3

Q(z)︷ ︸︸ ︷
(4 + 3z + 6z2 + 10z4) .

Let w ∈ C be a kth root of the number −b0/bk; that is, wk = −b0/bk.

As Q(z) is a polynomial, for t a real number,

t |Q(tw)| → 0, as t → 0

This implies that t |wk+1Q(tw)| → 0 as t → 0.

So there exists a real number t0 with 0 < t0 < 1 such that

t0 |wk+1Q(t0w)| < |b0| (6)

So, by (5), P (t0w) = b0 + bk(t0w)
k + (t0w)

k+1Q(t0w)

= b0 + bk

[
t0

k

(−b0
bk

)]
+ (t0w)

k+1Q(t0w)

= b0(1− t0
k) + (t0w)

k+1Q(t0w)

Therefore |P (t0w)| ≤ (1− t0
k)|b0|+ t0

k+1|wk+1Q(t0w)|

< (1− t0
k) |b0|+ t0

k |b0|, by (6)

= |b0|

= |P (0)| (7)

But (7) contradicts (4). Therefore the supposition that b0 �= 0 is false; that is, P (0) = 0, as

required. �
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8.6 Postscript

As mentioned in the Introduction, this is one of three chapters devoted to product spaces. The

easiest case is that of finite products. In the next chapter we study countably infinite products and

in Chapter 10, the general case. The most important result proved in this section is Tychonoff’s

Theorem1. In Chapter 10 this is generalized to arbitrary sized products.

The second result we called a theorem here is the Generalized Heine-Borel Theorem which

characterizes the compact subsets of Rn as those which are closed and bounded.

Exercises 8.4 #5 introduced the notion of topological group, that is a set with the structure

of both a topological space and a group, and with the two structures related in an appropriate

manner. Topological group theory is a rich and interesting branch of mathematics. Exercises 8.3

#1 introduced the notion of locally compact topological space. Such spaces play a central role

in topological group theory.

Our study of connectedness has been furthered in this section by defining the component of

a point. This allows us to partition any topological space into connected sets. In a connected

space like Rn the component of any point is the whole space. At the other end of the scale, the

components in any totally disconnected space, for example, Q, are all singleton sets.

As mentioned above, compactness has a local version. So too does connectedness. Exercises

8.4 #6 defined locally connected. However, while every compact space is locally compact, not

every connected space is locally connected. Indeed many properties P have local versions called

locally P, and P usually does not imply locally P and locally P usually does not imply P.

At the end of the chapter we gave a topological proof of the Fundamental Theorem of

Algebra. The fact that a theorem in one branch of mathematics can be proved using methods

from another branch is but one indication of why mathematics should not be compartmentalized.

While you may have separate courses on algebra, complex analysis, and number theory these

topics are, in fact, interrelated.

For those who know some category theory, we observe that the category of topological spaces

and continuous mappings has both products and coproducts. The products in the category are

indeed the products of the topological spaces. You may care to identify the coproducts.

1You should have noticed how sparingly we use the word “theorem�, so when we do use that term it is because
the result is important.



Appendix 1: Infinite Sets

Introduction

Once upon a time in a far-off land there were two hotels, the Hotel Finite (an ordinary hotel with

a finite number of rooms) and Hilbert’s Hotel Infinite (an extra-ordinary hotel with an infinite

number of rooms numbered 1, 2, . . . n, . . . ). One day a visitor arrived in town seeking a room.

She went first to the Hotel Finite and was informed that all rooms were occupied and so she

could not be accommodated, but she was told that the other hotel, Hilbert’s Hotel Infinite, can

always find an extra room. So she went to Hilbert’s Hotel Infinite and was told that there too

all rooms were occupied. However, the desk clerk said at this hotel an extra guest can always be

accommodated without evicting anyone. He moved the guest from room 1 to room 2, the guest

from room 2 to room 3, and so on. Room 1 then became vacant!

From this cute example we see that there is an intrinsic difference between infinite sets and

finite sets. The aim of this Appendix is to provide a gentle but very brief introduction to the

theory of Infinite Sets. This is a fascinating topic which, if you have not studied it before, will

contain several surprises. We shall learn that “infinite sets were not created equal" - some are

bigger than others. At first pass it is not at all clear what this statement could possibly mean.

We will need to define the term “bigger". Indeed we will need to define what we mean by “two

sets are the same size".

174
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A1.1 Countable Sets

A1.1.1 Definitions. Let A and B be sets. Then A is said to be equipotent to B, denoted

by A ∼ B, if there exists a function f : A → B which is both one-to-one and onto (that is,

f is a bijection or a one-to-one correspondence).

A1.1.2 Proposition. Let A, B, and C be sets.

(i) Then A ∼ A.

(ii) If A ∼ B then B ∼ A.

(iii) If A ∼ B and B ∼ C then A ∼ C.

Outline Proof.

(i) The identity function f on A, given by f(x) = x, for all x ∈ A, is a one-to-one correspondence

between A and itself.

(ii) If f is a bijection of A onto B then it has an inverse function g from B to A and g is also

a one-to-one correspondence.

(iii) If f : A → B is a one-to-one correspondence and g : B → C is a one-to-one correspondence,

then their composition gf : A → C is also a one-to-one correspondence.

Proposition A1.1.2 says that the relation “∼� is reflexive (i), symmetric (ii), and transitive

(iii); that is, “∼� is an equivalence relation.

A1.1.3 Proposition. Let n,m ∈ N. Then the sets {1, 2, . . . , n} and {1, 2, . . . ,m} are

equipotent if and only if n = m.

Proof. Exercise. �

Now we explicitly define the terms “finite set� and “infinite set�.
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A1.1.4 Definitions. Let S be a set.

(i) Then S is said to be finite if it is the empty set, Ø, or it is equipotent to {1, 2, . . . , n},
for some n ∈ N.

(ii) If S is not finite, then it is said to be infinite.

(iii) If S ∼ {1, 2, . . . , n} then S is said to have cardinality n, which is denoted by card S = n.

(iv) If S = Ø then the cardinality is said to be 0, which is denoted by card Ø = 0.

The next step is to define the “smallest� kind of infinite set. Such sets will be called countably

infinite. At this stage we do not know that there is any “bigger� kind of infinite set – indeed we

do not even know what “bigger� would mean in this context.

A1.1.5 Definitions. Let S be a set.

(i) The set S is said to be countably infinite (or denumerable) if it is equipotent to N.

(ii) The set S is said to be countable if it is finite or countably infinite.

(iii) If S is countably infinite then it is said to have cardinality ℵ0, denoted by card S = ℵ0.

(iv) A set S is said to be uncountable if it is not countable.

A1.1.6 Remark. We see that if the set S is countably infinite, then S = {s1, s2, . . . , sn, . . . }
where f : N → S is a one-to-one correspondence and sn = f(n), for all n ∈ N. So we can

list the elements of S. Of course if S is finite and non-empty, we can also list its elements by

S = {s1, s2, . . . , sn}. So we can list the elements of any countable set. Conversely, if the elements

of S can be listed then S is countable as the listing defines a one-to-one correspondence with N

or {1, 2, . . . , n}.

A1.1.7 Example. The set S of all even positive integers is countably infinite.

Proof. The function f : N → S given by f(n) = 2n, for all n ∈ N, is a one-to-one

correspondence.



177

Example A1.1.7 is worthy of a little contemplation. We think of two sets being in one-

to-one correspondence if they are “the same size�. But here we have the set N in one-to-one

correspondence with one of its proper subsets. This does not happen with finite sets. Indeed

finite sets can be characterized as those sets which are not equipotent to any of their proper

subsets.

A1.1.8 Example. The set Z of all integers is countably infinite.

Proof. The function f : N → Z given by

f(n) =


m, if n = 2m, m ≥ 1

−m, if n = 2m+ 1, m ≥ 1

0, if n = 1.

is a one-to-one correspondence.

A1.1.9 Example. The set S of all positive integers which are perfect squares is countably

infinite.

Proof. The function f : N → S given by f(n) = n2 is a one-to-one correspondence.

Example A1.1.9 was proved by G. Galileo about 1600. It troubled him and suggested to him

that the infinite is not man’s domain.

A1.1.10 Proposition. If a set S is equipotent to a countable set then it is countable.

Proof. Exercise.
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A1.1.11 Proposition. If S is a countable set and T ⊂ S then T is countable.

Proof. Since S is countable we can write it as a list S = {s1, s2, . . .} (a finite list if S is finite,

an infinite one if S is countably infinite).

Let t1 be the first si in T (if T �= Ø). Let t2 be the second si in T (if T �= {t1}). Let t3 be

the third si in T (if T �= {t1, t2}), . . . .

This process comes to an end only if T = {t1, t2, . . . , tn} for some n, in which case T is finite.

If the process does not come to an end we obtain a list {t1, t2, . . . , tn, . . .} of members of T . This

list contains every member of T , because if si ∈ T then we reach si no later than the ith step

in the process; so si occurs in the list. Hence T is countably infinite. So T is either finite or

countably infinite.

As an immediate consequence of Proposition 1.1.11 and Example 1.1.8 we have the following

result.

A1.1.12 Corollary. Every subset of Z is countable.

A1.1.13 Lemma. If S1, S2, . . . , Sn, . . . is a countably infinite family of countably infinite

sets such that Si ∩ Sj = Ø for i �= j, then
∞⋃
i=1

Si is a countably infinite set.

Proof. As each Si is a countably infinite set, Si = {si1, si2, . . . , sin, . . .}. Now put the sij in a

square array and list them by zigzagging up and down the short diagonals.

s11 → s12 s13 → s14 · · ·
↙ ↗ ↙

s21 s22 s23 · · ·
↓ ↗ ↙ ↗
s31 s32 s33 · · ·
... ↙ ... ↗ ...

. . .

This shows that all members of
⋃∞

i=1 Si are listed, and the list is infinite because each Si is infinite.

So
⋃∞

i=1 Si is countably infinite.

In Lemma A1.1.13 we assumed that the sets Si were pairwise disjoint. If they are not pairwise

disjoint the proof is easily modified by deleting repeated elements to obtain:
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A1.1.14 Lemma. If S1, S2, . . . , Sn, . . . is a countably infinite family of countably infinite

sets, then
∞⋃
i=1

Si is a countably infinite set.

A1.1.15 Proposition. The union of any countable family of countable sets is countable.

Proof. Exercise.

A1.1.16 Proposition. If S and T are countably infinite sets then the product set

S × T = {〈s, t〉 : s ∈ S, t ∈ T} is a countably infinite set.

Proof. Let S = {s1, s2, . . . , sn, . . . } and T = {t1, t2, . . . , tn, . . . }. Then

S × T =
∞⋃
i=1

{〈si, t1〉, 〈si, t2〉, . . . , 〈si, tn〉, . . . }.

So S × T is a countably infinite union of countably infinite sets and is therefore countably

infinite.

A1.1.17 Corollary. Every finite product of countable sets is countable.

We are now ready for a significant application of our observations on countable sets.

A1.1.18 Lemma. The set, Q>0, of all positive rational numbers is countably infinite.

Proof. Let Si be the set of all positive rational numbers with denominator i, for i ∈ N. Then

Si =
{

1
i
, 2
i
, . . . , n

i
, . . .
}

and Q>0 =
∞⋃
i=1

Si. As each Si is countably infinite, Proposition A1.1.15

yields that Q>0 is countably infinite.
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We are now ready to prove that the set, Q, of all rational numbers is countably infinite; that

is, there exists a one-to-one correspondence between the set Q and the (seemingly) very much

smaller set, N, of all positive integers.

A1.1.19 Theorem. The set Q of all rational numbers is countably infinite.

Proof. Clearly the set Q<0 of all negative rational numbers is equipotent to the set, Q>0, of all

positive rational numbers and so using Proposition A1.1.10 and Lemma A1.1.18 we obtain that

Q<0 is countably infinite.

Finally observe that Q is the union of the three sets Q>0, Q<0 and {0} and so it too is

countably infinite by Proposition A1.1.15.

A1.1.20 Corollary. Every set of rational numbers is countable.

Proof. This is a consequence of Theorem A1.1.19 and Proposition A1.1.11.

A1.1.21 Definitions. A real number x is said to be an algebraic number if there is a

natural number n and integers a0, a1, . . . , an with a0 �= 0 such that

a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0.

A real number which is not an algebraic number is said to be a transcendental number.

A1.1.22 Example. Every rational number is an algebraic number.

Proof. If x = p
q
, for p, q ∈ Z and q �= 0, then qx− p = 0; that is, x is an algebraic number with

n = 1, a0 = q, and an = −p.

A1.1.23 Example. The number
√
2 is an algebraic number which is not a rational number.

Proof. While x =
√
2 is irrational, it satisfies x2 − 2 = 0 and so is algebraic.



181

A1.1.24 Remark. It is also easily verified that 4
√
5−

√
3 is an algebraic number since it satisfies

x8− 12x6+44x4− 288x2+16 = 0. Indeed any real number which can be constructed from the set

of integers using only a finite number of the operations of addition, subtraction, multiplication,

division and the extraction of square roots, cube roots, . . . , is algebraic.

A1.1.25 Remark. Remark A1.1.24 shows that “most� numbers we think of are algebraic

numbers. To show that a given number is transcendental can be extremely difficult. The first

such demonstration was in 1844 when Liouville proved the transcendence of the number

∞∑
n=1

1

10n!
= 0.11000100000000000000000100 . . .

It was Charles Hermite who, in 1873, showed that e is transcendental. In 1882 Lindemann

proved that the number π is transcendental thereby answering in the negative the 2,000 year old

question about squaring the circle. (The question is: given a circle of radius 1, is it possible, using

only a straight edge and compass, to construct a square with the same area? A full exposition

of this problem and proofs that e and π are transcendental are to be found in the book, Jones,

Morris & Pearson [112].)

We now proceed to prove that the set A of all algebraic numbers is also countably infinite.

This is a more powerful result than Theorem A1.1.19 which is in fact a corollary of this result.
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A1.1.26 Theorem. The set A of all algebraic numbers is countably infinite.

Proof. Consider the polynomial f(x) = a0x
n+a1x

n−1+ · · ·+an−1x+an , where a0 �= 0 and each

ai ∈ Z and define its height to be k = n+ |a0|+ |a1|+ · · ·+ |an|.

For each positive integer k, let Ak be the set of all roots of all such polynomials of height k.

Clearly A =
∞⋃
k=1

Ak.

Therefore, to show that A is countably infinite, it suffices by Proposition A1.1.15 to show

that each Ak is finite.

If f is a polynomial of degree n, then clearly n ≤ k and |ai| ≤ k for i = 1, 2, . . . , n. So the set

of all polynomials of height k is certainly finite.

Further, a polynomial of degree n has at most n roots. Consequently each polynomial of

height k has no more than k roots. Hence the set Ak is finite, as required.

A1.1.27 Corollary. Every set of algebraic numbers is countable.

Note that Corollary A1.1.27 has as a special case, Corollary A1.1.20.

So far we have not produced any example of an uncountable set. Before doing so we observe

that certain mappings will not take us out of the collection of countable sets.

A1.1.28 Proposition. Let X and Y be sets and f a map of X into Y .

(i) If X is countable and f is surjective (that is, an onto mapping), then Y is countable.

(ii) If Y is countable and f is injective (that is, a one-to-one mapping), then X is countable.

Proof. Exercise.

A1.1.29 Proposition. Let S be a countable set. Then the set of all finite subsets of S

is also countable.

Proof. Exercise.
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A1.1.30 Definition. Let S be any set. The set of all subsets of S is said to be the power

set of S and is denoted by P(S).

A1.1.31 Theorem. (Georg Cantor) For every set S, the power set, P(S), is not

equipotent to S; that is, P(S) �∼ S.

Proof. We have to prove that there is no one-to-one correspondence between S and P(S). We

shall prove more: that there is not even any surjective function mapping S onto P(S).

Suppose that there exists a function f : S → P(S) which is onto. For each x ∈ S,

f(x) ∈ P(S), which is the same as saying that f(x) ⊆ S.

Let T = {x : x ∈ S and x �∈ f(x)}. Then T ⊆ S; that is, T ∈ P(S). So T = f(y) for some

y ∈ S, since f maps S onto P(S). Now y ∈ T or y �∈ T .

Case 1.

y ∈ T ⇒ y �∈ f(y) (by the definition of T)

⇒ y �∈ T (since f(y) = T ).

So Case 1 is impossible.

Case 2.

y �∈ T ⇒ y ∈ f(y) (by the definition of T)

⇒ y ∈ T (since f(y) = T ).

So Case 2 is impossible.

As both cases are impossible, we have a contradiction. So our supposition is false and there

does not exist any function mapping S onto P(S). Thus P(S) is not equipotent to S.
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A1.1.32 Lemma. If S is any set, then S is equipotent to a subset of its power set, P(S).

Proof. Define the mapping f : S → P(S) by f(x) = {x}, for each x ∈ S. Clearly f is a

one-to-one correspondence between the sets S and f(S). So S is equipotent to the subset f(S)

of P(S).

A1.1.33 Proposition. If S is any infinite set, then P(S) is an uncountable set.

Proof. As S is infinite, the set P(S) is infinite. By Theorem A1.1.31, P(S) is not equipotent

to S.

Suppose P(S) is countably infinite. Then by Proposition A1.1.11, Lemma 1.1.32 and

Proposition A1.1.10, S is countably infinite. So S and P(S) are equipotent, which is a

contradiction. Hence P(S) is uncountable.

Proposition A1.1.33 demonstrates the existence of uncountable sets. However the sceptic

may feel that the example is contrived. So we conclude this section by observing that important

and familiar sets are uncountable.
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A1.1.34 Lemma. The set of all real numbers in the half open interval [1, 2) is not

countable.

Proof. (Cantor’s diagonal argument) We shall show that the set of all real numbers in [1, 2)

cannot be listed.

Let L = {r1, r2, . . . rn . . . } be any list of real numbers each of which lies in the set [1, 2).

Write down their decimal expansions:

r1 =1.r11r12 . . . r1n . . .

r2 =1.r21r22 . . . r2n . . .
...

rm =1.rm1rm2 . . . rmn . . .
...

Consider the real number a defined to be 1.a1a2 . . . an . . . where, for each n ∈ N,

an =

{
1 if rnn �= 1

2 if rnn = 1.

Clearly an �= rnn and so a �= rn, for all n ∈ N. Thus a does not appear anywhere in the list

L. Thus there does not exist a listing of the set of all real numbers in [1, 2); that is, this set is

uncountable.

A1.1.35 Theorem. The set, R, of all real numbers is uncountable.

Proof. Suppose R is countable. Then by Proposition A1.1.11 the set of all real numbers in

[1, 2) is countable, which contradicts Lemma A1.1.34. Therefore R is uncountable.



186 APPENDIX 1: INFINITE SETS

A1.1.36 Corollary. The set, I, of all irrational numbers is uncountable.

Proof. Suppose I is countable. Then R is the union of two countable sets: I and Q. By

Proposition A1.1.15, R is countable which is a contradiction. Hence I is uncountable.

Using a similar proof to that in Corollary A1.1.36 we obtain the following result.

A1.1.37 Corollary. The set of all transcendental numbers is uncountable.

A1.2 Cardinal Numbers

In the previous section we defined countably infinite and uncountable and suggested, without

explaining what it might mean, that uncountable sets are “bigger� than countably infinite sets.

To explain what we mean by “bigger� we will need the next theorem.

Our exposition is based on that in the book, Halmos [84]
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A1.2.1 Theorem. (Cantor-Schröder-Bernstein) Let S and T be sets. If S is equipotent

to a subset of T and T is equipotent to a subset of S, then S is equipotent to T .

Proof. Without loss of generality we can assume S and T are disjoint. Let f : S → T and

g : T → S be one-to-one maps. We are required to find a bijection of S onto T .

We say that an element s is a parent of an element f(s) and f(s) is a descendant of s.

Also t is a parent of g(t) and g(t) is a descendant of t. Each s ∈ S has an infinite sequence of

descendants: f(s), g(f(s)), f(g(f(s))), and so on. We say that each term in such a sequence is

an ancestor of all the terms that follow it in the sequence.

Now let s ∈ S. If we trace its ancestry back as far as possible one of three things must

happen:

(i) the list of ancestors is finite, and stops at an element of S which has no ancestor;

(ii) the list of ancestors is finite, and stops at an element of T which has no ancestor;

(iii) the list of ancestors is infinite.

Let SS be the set of those elements in S which originate in S; that is, SS is the set S \ g(T )
plus all of its descendants in S. Let ST be the set of those elements which originate in T ; that

is, ST is the set of descendants in S of T \ f(S). Let S∞ be the set of all elements in S with no

parentless ancestors. Then S is the union of the three disjoint sets SS, ST and S∞. Similarly T

is the disjoint union of the three similarly defined sets: TT , TS, and T∞.

Clearly the restriction of f to SS is a bijection of SS onto TS.

Now let g−1 be the inverse function of the bijection g of T onto g(T ). Clearly the restriction

of g−1 to ST is a bijection of ST onto TT .

Finally, the restriction of f to S∞ is a bijection of S∞ onto T∞.

Define h : S → T by

h(s) =


f(s) if s ∈ SS

g−1(s) if s ∈ ST

f(s) if s ∈ S∞.

Then h is a bijection of S onto T . So S is equipotent to T .
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Our next task is to define what we mean by “cardinal number�.

A1.2.2 Definitions. A collection, ℵ, of sets is said to be a cardinal number if it satisfies

the conditions:

(i) Let S and T be sets. If S and T are in ℵ, then S ∼ T ;

(ii) Let A and B be sets. If A is in ℵ and B ∼ A, then B is in ℵ.

If ℵ is a cardinal number and A is a set in ℵ, then we write card A = ℵ.

Definitions A1.2.2 may, at first sight, seem strange. A cardinal number is defined as a

collection of sets. So let us look at a couple of special cases:

If a set A has two elements we write card A = 2; the cardinal number 2 is the collection of

all sets equipotent to the set {1, 2}, that is the collection of all sets with 2 elements.

If a set S is countable infinite, then we write card S = ℵ0; in this case the cardinal number

ℵ0 is the collection of all sets equipotent to N.

Let S and T be sets. Then S is equipotent to T if and only if card S = card T .

A1.2.3 Definitions. The cardinality of R is denoted by c; that is, card R = c. The

cardinality of N is denoted by ℵ0.

The symbol c is used in Definitions A1.2.3 as we think of R as the “continuum�.

We now define an ordering of the cardinal numbers.

A1.2.4 Definitions. Let m and n be cardinal numbers. Then the cardinal m is said to

be less than or equal to n, that is m ≤ n, if there are sets S and T such that card m = S,

card T = n, and S is equipotent to a subset of T . Further, the cardinal m is said to be

strictly less than n, that is m < n, if m ≤ n and m �= n.

As R has N as a subset, card R = c and card N = ℵ0, and R is not equipotent to N, we

immediately deduce the following result.

A1.2.5 Proposition. ℵ0 < c.
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We also know that for any set S, S is equipotent to a subset of P(S), and S is not equipotent

to P(S), from which we deduce the next result.

A1.2.6 Theorem. For any set S, card S < card P(S).

The following is a restatement of the Cantor-Schröder-Bernstein Theorem.

A1.2.7 Theorem. Let m and n be cardinal numbers. If m ≤ n and n ≤ m, then

m = n.

A1.2.8 Remark. We observe that there are an infinite number of infinite cardinal numbers.

This is clear from the fact that:

(∗) ℵ0 = card N < card P(N) < card P(P(N)) < . . .

The next result is an immediate consequence of Theorem A1.2.6.

A1.2.9 Corollary. There is no largest cardinal number.

Noting that if a finite set S has n elements, then its power set P(S) has 2n elements, it is

natural to introduce the following notation.

A1.2.10 Definition. If a set S has cardinality ℵ, then the cardinality of P(S) is denoted

by 2ℵ.

Thus we can rewrite (∗) above as:

(∗∗) ℵ0 < 2ℵ0 < 22
ℵ0 < 22

2ℵ0

< . . . .

When we look at this sequence of cardinal numbers there are a number of questions which

should come to mind including:

(1) Is ℵ0 the smallest infinite cardinal number?
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(2) Is c equal to one of the cardinal numbers on this list?

(3) Are there any cardinal numbers strictly between ℵ0 and 2ℵ0?

These questions, especially (1) and (3), are not easily answered. Indeed they require a careful

look at the axioms of set theory. It is not possible in this Appendix to discuss seriously the axioms

of set theory. Nevertheless we will touch upon the above questions later in the appendix.

We conclude this section by identifying the cardinalities of a few more familiar sets.

A1.2.11 Lemma. Let a and b be real numbers with a < b. Then

(i) [0, 1] ∼ [a, b];

(ii) (0, 1) ∼ (a, b);

(iii) (0, 1) ∼ (1,∞);

(iv) (−∞,−1) ∼ (−2,−1);

(v) (1,∞) ∼ (1, 2);

(vi) R ∼ (−2, 2);

(vii) R ∼ (a, b).

Outline Proof. (i) is proved by observing that f(x) = a + b x defines a one-to-one function of

[0, 1] onto [a, b]. (ii) and (iii) are similarly proved by finding suitable functions. (iv) is proved using

(iii) and (ii). (v) follows from (iv). (vi) follows from (iv) and (v) by observing that R is the union

of the pairwise disjoint sets (−∞,−1), [−1, 1] and (1,∞). (vii) follows from (vi) and (ii). .
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A1.2.12 Proposition. Let a and b be real numbers with a < b. If S is any subset of R

such that (a, b) ⊆ S, then card S = c. In particular, card (a, b) = card [a, b] = c.

Proof. Using Lemma A1.2.11 observe that

card R = card (a, b) ≤ card [a, b] ≤ card R.

So card (a, b) = card [a, b] = card R = c. .

A1.2.13 Proposition. If R2 is the set of points in the Euclidean plane, then card (R2) =

c.

Outline Proof. By Proposition A1.2.12, R is equipotent to the half-open interval [0, 1) and it is

easily shown that it suffices to prove that [0, 1)× [0, 1) ∼ [0, 1).

Define f : [0, 1) → [0, 1)× [0, 1) by f(x) is the point 〈x, 0〉. Then f is a one-to-one mapping

of [0, 1) into [0, 1)× [0, 1) and so c = card [0, 1) ≤ card [0, 1)× [0, 1).

By the Cantor-Schröder-Bernstein Theorem, it suffices then to find a one-to-one function g

of [0, 1)× [0, 1) into [0, 1). Define

g(〈0.a1a2 . . . an . . . , 0.b1b2 . . . bn . . . , 〉) = 0.a1b1a2b2 . . . anbn . . . .

Clearly g is well-defined (as each real number in [0, 1) has a unique decimal representation that

does not end in 99. . . 9. . . ) and is one-to-one, which completes the proof.

A1.3 Cardinal Arithmetic

We begin with a definition of addition of cardinal numbers. Of course, when the cardinal numbers

are finite, this definition must agree with addition of finite numbers.

A1.3.1 Definition. Let α and β be any cardinal numbers and select disjoint sets A and

B such that card A = α and card B = β. Then the sum of the cardinal numbers α and β

is denoted by α+ β and is equal to card (A ∪B).
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A1.3.2 Remark. Before knowing that the above definition makes sense and in particular does

not depend on the choice of the sets A and B, it is necessary to verify that if A1 and B1 are

disjoint sets and A and B are disjoint sets such that card A = card A1 and card B = card B1,

then A ∪ B ∼ A1 ∪ B1; that is, card (A ∪ B) = card (A1 ∪ B1). This is a straightforward task and

so is left as an exercise.

A1.3.3 Proposition. For any cardinal numbers α, β and γ :

(i) α+ β = β + α ;

(ii) α+ (β + γ) = (α+ β) + γ ;

(iii) α+ 0 = α ;

(iv) If α ≤ β then α+ γ ≤ β + γ .

Proof. Exercise

A1.3.4 Proposition.

(i) ℵ0 + ℵ0 = ℵ0;

(ii) c+ ℵ0 = c;

(iii) c+ c = c;

(iv) For any finite cardinal n, n+ ℵ0 = ℵ0 and n+ c = c.

Proof.

(i) The listing 1,−1, 2,−2, . . . , n,−n, . . . shows that the union of the two countably infinite sets

N and the set of negative integers is a countably infinite set.

(ii) Noting that [−2,−1] ∪ N ⊂ R, we see that card [−2,−1] + card N ≤ card R = c. So

c = card [−2,−1] ≤ card ([−2,−1] ∪ N) = card [−2,−1] + card N = c+ ℵ0 ≤ c.

(iii) Note that c ≤ c + c = card ((0, 1) ∪ (1, 2)) ≤ card R = c from which the required result is

immediate.

(iv) Observe that ℵ0 ≤ n+ ℵ0 ≤ ℵ0 + ℵ0 = ℵ0 and c ≤ n+ c ≤ c+ c = c, from which the results

follow.

Next we define multiplication of cardinal numbers.
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A1.3.5 Definition. Let α and β be any cardinal numbers and select disjoint sets A and

B such that card A = α and card B = β. Then the product of the cardinal numbers α and

β is denoted by αβ and is equal to card (A×B).

As in the case of addition of cardinal numbers, it is necessary, but routine, to check in

Definition A1.3.5 that αβ does not depend on the specific choice of the sets A and B.

A1.3.6 Proposition. For any cardinal numbers α, β and γ

(i) αβ = βα ;

(ii) α(βγ) = (αβ)γ ;

(iii) 1.α = α ;

(iv) 0.α = 0;

(v) α(β + γ) = αβ + αγ;

(vi) For any finite cardinal n, nα = α+ α+ . . . α (n-terms);

(v1i) If α ≤ β then αγ ≤ βγ .

Proof. Exercise

A1.3.7 Proposition.

(i) ℵ0 ℵ0 = ℵ0;

(ii) c c = c;

(iii) cℵ0 = c;

(iv) For any finite cardinal n, nℵ0 = ℵ0 and n c = c.

Outline Proof. (i) follows from Proposition 1.1.16, while (ii) follows from Proposition A1.2.13.

To see (iii), observe that c = c.1 ≤ cℵ0 ≤ c c = c. The proof of (iv) is also straightforward.

The next step in the arithmetic of cardinal numbers is to define exponentiation of cardinal

numbers; that is, if α and β are cardinal numbers then we wish to define α β.
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A1.3.8 Definitions. Let α and β be cardinal numbers and A and B sets such that

card A = α and card B = β. The set of all functions f of B into A is denoted by AB.

Further, α β is defined to be card AB.

Once again we need to check that the definition makes sense, that is that αβ does not depend

on the choice of the sets A and B. We also check that if n and m are finite cardinal numbers,

A is a set with n elements and B is a set with m elements, then there are precisely nm distinct

functions from B into A.

We also need to address one more concern: If α is a cardinal number and A is a set such

that card A = α, then we have two different definitions of 2α. The above definition has 2α as

the cardinality of the set of all functions of A into the two point set {0, 1}. On the other hand,

Definition A1.2.10 defines 2α to be card (P(A)). It suffices to find a bijection θ of {0, 1}A onto

P(A). Let f ∈ {0, 1}A. Then f : A → {0, 1}. Define θ(f) = f−1(1). The task of verifying that θ

is a bijection is left as an exercise.

A1.3.9 Proposition. For any cardinal numbers α, β and γ :

(i) α β+γ = αβαγ ;

(ii) (αβ)γ = αγ βγ ;

(iii) (αβ)
γ
= α(βγ) ;

(iv) α ≤ β implies αγ ≤ βγ ;

(v) α ≤ β implies γα ≤ γ β .

Proof. Exercise

After Definition A1.2.10 we asked three questions. We are now in a position to answer the

second of these questions.
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A1.3.10 Lemma. ℵ0
ℵ0 = c.

Proof. Observe that card NN = ℵ0
ℵ0 and card (0, 1) = c. As the function f : (0, 1) → NN given

by f(0.a1a2 . . . an . . . ) = 〈a1, a2, . . . , an, . . . 〉 is an injection, it follows that c ≤ ℵ0
ℵ0.

By the Cantor-Schröder-Bernstein Theorem, to conclude the proof it suffices to find an

injective map g of NN into (0, 1). If 〈a1, a2, . . . , an, . . . 〉 is any element of NN, then each ai ∈ N

and so we can write

ai = . . . ain ai(n−1) . . . ai2 ai1, where for some Mi ∈ N, ain = 0, for all n > Mi [For example

187 = . . . 0 0 . . . 0 1 8 7 and so if ai = 187 then ai1 = 7, ai2 = 8, ai3=1 and ain = 0, for n > Mi = 3.]

Then define the map g by

g(〈a1, a2, . . . , an, . . . 〉) = 0.a11a12a21a13a22a31a14a23a32a41a15a24a33a42a51a16 . . . .

(Compare this with the proof of Lemma A1.1.13.)

Clearly g is an injection, which completes the proof.

We now state a beautiful result, first proved by Georg Cantor.

A1.3.11 Theorem. 2ℵ0 = c.

Proof. Firstly observe that 2ℵ0 ≤ ℵ0
ℵ0 = c, by Lemma A1.3.10. So we have to verify that

c ≤ℵ0. To do this it suffices to find an injective map f of the set [0, 1) into {0, 1}N. Each element

x of [0, 1) has a binary representation x = 0.x1x2 . . . xn . . . , with each xi equal to 0 or 1. The

binary representation is unique except for representations ending in a string of 1s; for example,

1/4 = 0.0100 . . . 0 · · · = 0.0011 . . . 1 . . . .

Providing that in all such cases we choose the representation with a string of zeros rather

than a string of 1s, the representation of numbers in [0, 1) is unique. We define the function

f : [0, 1) → {0, 1}N which maps x ∈ [0, 1) to the function f(x) : N → {0, 1} given by f(x)(n) = xn,

n ∈ N. To see that f is injective, consider any x and y in [0, 1) with x �= y. Then xm �= ym, for

some m ∈ N. So f(x)(m) = xm �= ym = f(y)(m). Hence the two functions f(x) : N → {0, 1} and

f(y) : N → {0, 1} are not equal. As x and y were arbitrary (unequal) elements of [0, 1), it follows

that f is indeed injective, as required.



196 APPENDIX 1: INFINITE SETS

A1.3.12 Corollary. If α is a cardinal number such that 2 ≤ α ≤ c, then αℵ0 = c.

Proof. Observe that c = 2ℵ0 ≤ αℵ0 ≤ cℵ0 = (2ℵ0)ℵ0 = 2ℵ0.ℵ0 = 2ℵ0 = c.
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normed vector space, 102

nowhere dense, 133

number

algebraic, 180
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cardinal, 188

transcendental, 180

object, 84

one-to-one, 22

one-to-one correspondence, 175

onto, 22

open

ball, 103

covering, 143

mapping, 137, 151, 159

set, 15

open covering, 143

Open Mapping Theorem, 136

P, 34, 66

P(S), 183

path, 92

path-connected, 92

pathwise connected, 92

peak point, 121

point, 51

accumulation, 51

cluster, 51

fixed, 94, 130

isolated, 138

limit, 51

neighbourhood of, 56

peak, 121

Polish space, 125

power set, 183

product, 155

space, 155

topology, 155, 161

product of cardinal numbers, 193

product topology, 41

proof

by contradiction, 32

if and only if, 35

mathematical, 8

proper subset, 19

property

fixed point, 94

separation, 28

topological, 83

Q, 33, 66

R, 14, 30, 170

R2, 39

Rn, 39

reflexive, 71

regular, 158

regular space, 68

relation

equivalence, 83, 127, 175

reflexive, 71

symmetric, 71

transitive, 71

relative topology, 64

Sn, 165

S1, 165

second axiom of countability, 41

second axion of countability, 158

second category, 135

semicontinuous

lower, 139
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upper, 139

separable, 58, 125, 158

separation property, 28

sequence

Cauchy, 119

convergent, 115

decreasing, 121

increasing, 121

monotonic, 121

set

Fσ, 34, 138

Gδ, 34, 138

analytic, 125

clopen, 18

closed, 16

convex, 135

countable, 176

denumerable, 176

finite, 176

first category, 135

infinite, 176

meager, 135

of continuous real-valued functions, 47

of integers, 33, 66

of irrational numbers, 34, 66

of natural numbers, 9, 66

of positive integers, 9, 66

of rational numbers, 33, 66

open, 15

power, 183

second category, 135

uncountable, 176

Sierpinski space, 26

Sorgenfrey line, 60, 145

Souslin space, 125

space

T0, 26

T1, 26, 158

T2, 68, 107

T3, 68

T4, 111

Baire, 134

Banach, 128

bikompakt, 153

compact, 143

complete metric, 120

completely metrizable, 124

connected, 61

disconnected, 62

discrete, 9

Hausdorff, 68, 107, 157

indiscrete, 9

induced by a metric, 105

locally compact, 166

locally connected, 170

metric, 98

metrizable, 108

normal, 111, 152

normed vector, 102

Polish, 125

product, 155

regular, 68, 158

separable, 58, 125, 158

Sierpinski, 26

Souslin, 125

topological, 8
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totally disconnected, 95, 158

subbasis, 48

subcovering

finite, 143

subsequence, 121

subset

dense, 54

everywhere dense, 54

proper, 19

subspace, 64

subspace topology, 64

sum of cardinal numbers, 191

suppose

proof by contradiction, 32

supremum, 60

surface, 166

surjective, 22

symmetric, 71

T0-space, 26

T1-space, 26, 158

T2-space, 68, 107

T3-space, 68

T4-space, 111

T, 114, 170

Theorem

Baire Category, 133

Banach Fixed Point, 131

Bolzano-Weierstrass, 122

Brouwer Fixed Point, 94

Contraction Mapping, 131

Converse of Heine-Borel, 148

Fundamental Theorem of Algebra, 171

Generalized Heine-Borel, 149, 165

Heine-Borel, 148

Mean Value, 132

Open Mapping, 136

Tychonoff, 164

Weierstrass Intermediate Value, 93

topological

manifold, 114

manifold with boundary, 114

topological group, 170

of real numbers, 170

topological property, 83

topological space, 8

topology, 8

coarser, 91, 159

cofinite, 20

countable closed, 26

discrete, 9

euclidean, 30

euclidean on Rn, 39

final segment, 14

finer, 91, 159

finite-closed, 20

indiscrete, 9

induced, 64

induced by a metric, 105

initial segment, 14

intersection, 27

product, 41, 155, 161

relative, 64

subspace, 64

usual, 66

totally bounded
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metric space, 113

totally disconnected, 95

totally disconnected space, 158

transcendental number, 180

transitive, 71

Tychonoff’s Theorem, 164

uncountable set, 176

union

empty, 13

unit ball, 152

upper bound, 60

upper semicontinuous, 139

usual topology, 66

vector space

normed, 102

Weierstrass Intermediate Value Theorem, 93

Z, 33, 66

0-dimensional, 96

zero-dimensional, 96


